

Appendix C:

Summary of Comments and Responses

Contents

Appendix C. Introduction.....	C-1
C.1 PUBLIC OUTREACH AND COORDINATION	C-1
C.2 FORMAL DRAFT EIS PUBLIC COMMENT PERIOD.....	C-2
C.2.1 Summary of Comments Received.....	C-3
C.2.2 Summary of Comment Groups	C-3
C.3 COMMENTERS ON THE EIS	C-5
C.3.1 Interested Individuals.....	C-5
C.3.2 Agencies.....	C-23
C.4 COMMENTS AND RESPONSES	C-23
C.4.1 Executive Summary.....	C-23
C.4.2 Chapter 1 Purpose and Need.....	C-24
C.4.3 Chapter 2 Alternatives Considered.....	C-25
C.4.4 Chapter 3 Transportation.....	C-34
C.4.5 Chapter 4, Section 4.1 Property Acquisitions	C-40
C.4.6 Chapter 4, Section 4.2 Land Use.....	C-45
C.4.7 Chapter 4, Section 4.3 Socioeconomic Conditions.....	C-47
C.4.8 Chapter 4, Section 4.4 Neighborhoods and Communities.....	C-50
C.4.9 Chapter 4, Section 4.5 Visual Quality	C-51
C.4.10 Chapter 4, Section 4.6 Historic and Cultural Resources.....	C-51
C.4.11 Chapter 4, Section 4.7 Parklands and Recreational Resources	C-52
C.4.12 Chapter 4, Section 4.8 Geology, Soils, and Prime Farmlands.....	C-52
C.4.13 Chapter 4, Section 4.9 General Ecology and Wildlife.....	C-53
C.4.14 Chapter 4, Section 4.10 Water Resources.....	C-54
C.4.15 Chapter 4, Section 4.11 Noise and Section 4.12 Vibration	C-55
C.4.16 Chapter 4, Section 4.13 Air Quality	C-58
C.4.17 Chapter 4, Section 4.14 Energy	C-58
C.4.18 Chapter 4, Section 4.15 Hazardous Materials	C-58
C.4.19 Chapter 4, Section 4.16 Utilities	C-59
C.4.20 Chapter 4, Section 4.17 Construction Effects	C-59
C.4.21 Chapter 4, Section 4.18 Indirect and Cumulative Effects	C-62
C.4.22 Chapter 4, Section 4.19 Commitment of Resources	C-62
C.4.23 Chapter 5 Section 4(f).....	C-62
C.4.24 Chapter 6 Comparison of Alternatives.....	C-63
C.4.25 Agency Comments.....	C-69
C.4.26 Project Support.....	C-69
C.4.27 Project Opposition.....	C-71
C.4.28 Other Comments	C-72
C.5 AGENCY COMMENTS	C-73
C.5.1 Environmental Protection Agency	C-73
C.5.2 Department of the Interior	C-78
C.5.3 New York State Department of Transportation	C-79
C.5.4 Town of Amherst.....	C-84

Acronyms and Abbreviations

BMP.....	Best Management Practice
BNMC	Buffalo Niagara Medical Campus
BRT.....	Bus Rapid Transit
CAA.....	Clean Air Act
CEQ.....	Council for Environmental Quality
CIG.....	Capital Investment Grant
CWA.....	Clean Water Act
DEIS	Draft Environmental Impact Statement

EIS.....	Environmental Impact Statement
EPA.....	Environmental Protection Agency
FHWA.....	Federal Highway Administration
FTA	Federal Transit Administration
GBNRTC.....	Greater Buffalo Niagara Regional Transportation Council
LOS	Level of Service
LRT.....	Light Rail Transit
Metro.....	Niagara Frontier Transit Metro System, Inc.
Metro Rail.....	Metro Light Rail Transit System
MPO	Metropolitan Planning Organization
NEPA.....	National Environmental Policy Act
NFTA	Niagara Frontier Transportation Authority
NOI	Notice of Intent
NYCRR	New York Codes, Rules and Regulations
NYSDOT.....	New York State Department of Transportation
NYSDEC	New York State Department of Environmental Conservation
OWJ	Officials with Jurisdiction
Project.....	Buffalo-Amherst-Tonawanda Corridor Transit Expansion
ROD.....	Record of Decision
ROW	Right of Way
SCC.....	Standard Cost Categories
SEQR	State Environmental Quality Review
SHPO.....	State Historic Preservation Office
STOPs.....	Simplified Trips-on-Project Software
TDI	Transit Dependency Index
TOD.....	Transit-Oriented Development
VMT.....	Vehicle Miles Traveled
UB	University at Buffalo
USFWS.....	US Fish and Wildlife Service

Appendix C. Introduction

The Federal Transit Administration (FTA), as lead Federal agency, and the Niagara Frontier Transit Metro System, Inc. (Metro), as local project sponsor and joint lead agency have prepared this Final Environmental Impact Statement (EIS) and Section 4(f) Evaluation for the Buffalo-Amherst-Tonawanda Corridor Transit Expansion (the Project).

In the Draft EIS (DEIS), FTA and Metro evaluated three alternatives, the No Action Alternative (No Build), the Bus Rapid Transit (BRT) Build Alternative, and the Light Rail Transit (LRT) Build Alternative which is the Metro Locally Preferred Alternative. The proposed Project would expand high quality transit service in Buffalo, New York to Tonawanda and Amherst, New York. Today Metro operates a 6.4-mile light rail transit line called Metro Rail that provides service along Main Street in Buffalo, New York, from Downtown Buffalo to the State University of New York, University at Buffalo (UB) South Campus. The Project would expand the present service to include high-quality transit service from the current terminus at the Metro Rail University Station to existing and emerging activity centers in Amherst and Tonawanda.

The EIS evaluates the Project in accordance with National Environmental Policy Act (NEPA) (42 U.S.C. § 4321 et seq.), FTA's Environmental Impact and Related Procedures (23 CFR §771), and the New York State Environmental Quality Review Act (SEQR, NY ENV'T CONSERV. LAW Article 8 and 6 NYCRR Part 617). This document is an appendix to the Final EIS (FEIS) and summarizes and responds to comments on the DEIS.

As a result of EO 14148, EO 14154, the U.S. Department of Transportation memorandum implementing these EO's, and the rescission of CEQ's NEPA implementing regulations, impacts and analyses regarding climate change and greenhouse gases are no longer applicable to the Federal environmental review process. Accordingly, this ROD/FEIS does not consider public comments regarding climate change or greenhouse gas emissions in making Federal decisions. However, responses are provided to those comments in this section to address State requirements.

C.1 PUBLIC OUTREACH AND COORDINATION

On August 30, 2021, the FTA, in coordination with Metro, issued a Notice of Intent (NOI) to prepare an Environmental Impact Statement (EIS) in accordance with NEPA, the Fixing America's Surface Transportation Act, the New York State Environmental Quality Review Act (SEQR), and Article 8 of the New York State Environmental Conservation Law and its implementing regulations. The NOI initiates public scoping for the NEPA EIS and provides information on the Project, including its purpose and need and the alternatives being considered for evaluation. The NOI also invites public comment on the environmental impacts that may be

associated with the Project and the alternatives being considered for evaluation. The 45-day public scoping period ended on October 14, 2021.

In addition to the formal NEPA scoping meetings, Metro held public meetings for the Project throughout the development of design concepts and the SEQR environmental review process. The following describes these meetings:

- A public open house was held on December 6, 2018, at Sweet Home Middle School in the Town of Amherst to provide the results of the re-evaluation of the Locally Preferred Alternative.
- A public scoping meeting for the SEQR EIS was held on February 12, 2019, at Sweet Home Middle School in the Town of Amherst to provide input on the Project's purpose and need, its objectives, the potential alternatives under consideration, and the environmental analysis methodology. A Draft Scope for the SEQR environmental analysis was issued on January 24, 2019, followed by a 45-day public comment period.
- A public workshop was held on June 11, 2019, in Hayes Hall at the University at Buffalo (UB) South Campus, to present various station design concepts, ridership projections, and traffic analysis results.
- A public workshop was held on September 24, 2019, at Sweet Home Middle School in the Town of Amherst, to present concept design plans, updated station design concepts, traffic analysis results, and preliminary environmental analysis and impacts.
- Two public hearings were held in February 2020 to provide an opportunity for the public and local agencies to comment and provide their input following the release of the SEQR Draft EIS in January 2020. The written and oral comments received during the SEQR public hearings, the comments received during the SEQR Draft EIS 60-day public comment period, and the findings of the SEQR Draft EIS were considered during the NEPA process.
- Two public NEPA scoping meetings for the Project were held using Zoom Webinar video conferencing on Wednesday, September 15, 2021.
- In January and February 2024, NFTA conducted public “listening sessions” and a public survey to solicit public input on current transportation challenges, weekly travel destinations, how to improve transit service in the Towns of Amherst and Tonawanda, and concerns related to the Project.

C.2 FORMAL DRAFT EIS PUBLIC COMMENT PERIOD

The DEIS and Draft Section 4(f) Evaluation were made available for public review at the Project website (https://www.nftametrotransitexpansion.com/draft_eis/), starting on July 25, 2025.

Comments on this DEIS were due by September 8, 2025. A formal DEIS and Draft Section 4(f)

Evaluation Public Hearing was held on August 19, 2025, at 6:00 PM at Sweet Home Middle School, 4150 Maple Rd, Amherst, NY 14226. Interested individuals, elected officials, agencies, and organizations were able to submit comments during the DEIS public comment period in a variety of ways:

- Provide oral testimony at the August 19, 2025, Public Hearing
- Record comments on a comment card available at the Public Hearing
- Submit comments online at the Project website www.nftametrotransitexpansion.com
- Email comments to transitexpansion@nfta.com
- Call and leave comments via voicemail at (716) 855-7382
- Mail comments to the Niagara Frontier Transportation Authority, 181 Ellicott Street, Buffalo, New York 14203; Attention: Jeffery Amplement

C.2.1 Summary of Comments Received

To summarize comments received, the following definitions are used:

- **Submission:** A comment submission or submission is defined as an interested individual's or interested party's single submission of comments related to the DEIS during the formal comment period.
- **Comment:** A comment is defined as a singular and unique comment related to the DEIS. A submission may include multiple comments.

During the DEIS public comment period, a variety of submissions were received using the methods described above, below is a summary of the 739 submissions received organized by submission method:

- 52 submissions were received via oral testimony at the Public Hearing
- 15 submissions were received via comment cards at the Public Hearing
- 463 submissions were received via the Project website
- 197 submissions were received via email
- 1 submission was received via voicemail
- 11 written submissions were received via mail

C.2.2 Summary of Comment Groups

Comments received were categorized into the following groups:

Comment Group Number	Comment Group Name	Section Identification
1	Executive Summary	C.4.1.1
2	Project Need Sentiment	C.4.2.1
3	N/A (combined with another group)	C.4.2.2
4	Build Alternatives	C.4.3.1
5	Build Alternative Stations	C.4.3.2
6	Alternate Alignment Considerations	C.4.3.3
7	Proposed Build Alternative Design Concepts	C.4.3.4
8	Project Costs, Funding, and Other Concerns	C.4.3.5
9	Other Comments on Build Alternatives	C.4.3.6
10	Traffic Assessment of the Proposed Build Alternatives	C.4.4.1
11	Forecasted Travel Demand and Ridership	C.4.4.2
12	Pedestrian and Bicycle	C.4.4.3
13	Transportation Safety and Security	C.4.4.4
14	Impacts to Residents and Businesses	C.4.5.1
15	Displacements and Proposed Property Acquisitions	C.4.5.2
16	Property Values	C.4.5.3
17	Land Uses	C.4.6.1
18	Economic Development	C.4.6.2
19	Parking Land Uses	C.4.6.3
20	Jobs and Economy	C.4.7.1
21	Households and Population	C.4.7.2
22	Community Cohesion	C.4.8.1
23	Community Character and Facilities	C.4.8.2
24	Geology, Soils, and Prime Farmlands	C.4.12.1
25	General Ecology and Wildlife	C.4.13.1
26	Water Resources	C.4.14.1
27	Noise and Vibration	C.4.15.1
28	Air Quality	C.4.16.1
29	Construction Effects	C.4.20.1
30	Construction Duration	C.4.20.2
31	Alternatives Comparison	C.4.24.1
32	Other Preferred Transit Service	C.4.24.2
33	Prefer No Build Alternative	C.4.24.3
34	Prefer BRT Build Alternative	C.4.24.4
35	Prefer LRT Build Alternative	C.4.24.5
36	Agency Comments	C.5
37	Project Support	C.4.26.1
38	Project Opposition	C.4.27.1
39	Comments not Directly Related to the Project	C.4.28.1
40	Other Comments Including Public Outreach	C.4.28.2

*Comments could be included in multiple comment groups

C.3 COMMENTERS ON THE EIS

The list of submissions below identifies all who submitted comments during the comment period. In some instances, commenters used one or more of the available methods for submitting comments. Where a commenter provided oral testimony based on a written statement submitted at the public meeting or shortly thereafter, both the oral testimony and the written statement were reviewed for consistency and completeness.

Similar comments received from multiple commenters have been combined under a single “Comment Group.” Below is an alphabetical list of commenters (individual or agency) using the naming convention provided, along with their submission numbers and associated comment groups. Please note minor editing was performed on the public hearing transcript comments to correct typos and improve readability. All efforts were taken to retain the substance and tone of the oral testimony. Attachment C.1 of this Appendix provides the record of all public comments received during the public comment period.

C.3.1 Interested Individuals

Individual Comment Submissions and their Associated Comment Groups

Name	Submission #	Comment Groups
A,	2090	10, 37
Abbott, Leo	2142	37
Abel, Barbara	2360	38, 40
Abernathy, Alex	2061	35, 37
Ables,	1947	37
Acevedo, Natasha	1966	20
Adamo, Carol	2315	37
Adu, Akosua	2128	37
Akarah, Amanie	2058	37
Akhter, Adiba	2347	35
Akono, Jomo	2096	37
Alam, Deborah	2273	14, 26, 38
Alam, Deborah	2411	38
Alam, Deborah	2479	38
Albano, Scott	2303	37
Alello, Michael	2146	35, 37
Alexander, Zac	1839	6, 38
Allen, Rod	2269	37
Allum, Deborah	2438	10, 32, 38
Aloisio,	2131	12, 21, 37, 40
Alston, David	2302	37
Amm, Robert	1899	35

Name	Submission #	Comment Groups
Amos, Raymond	2319	37
Anderson, Richard	1846	31, 32
Andrews, Vanessa	1943	10, 38
Artis, Andrea	1958	37
Astalos, Holly	1936	37
Atlas, Sheryl	1820	37
Austin, Chris	2095	37
Austin, Chris	2270	37
Austin, Supervisor, Mark	2396	36
B,	1853	37
B,	2074	37
B,	2100	37
B, C	2040	6, 9
Babiarz, Melissa	1954	8, 39
Bachman, Benjamin	2173	18, 37
Bacon, Charles	2227	37
Bajdas, Courtney	2234	35
Baker, Kayla	1721	37
baker, michael	1778	37
baker, Michael	1950	37
Baker, Morgan	1768	10, 12, 27, 35, 37
Bankowski, Samuel	2406	37
Barrett, Michael	2292	37
Bartlett, Peter	2447	18, 21, 35, 37, 39
Basinski, Phil	1757	7, 8, 10
Basinski, Phil	1955	8
BASS, LYNN	1938	8, 32, 38, 40
Bassanello,	2215	18
Battey, John	2463	12
Bautista, Maria	2310	37
Becker, Bruce	2418	37
Becker, Kristine	2017	37
Benjamin, Ian	2397	37
bichon, juliette	2032	37
Blackall, K	2002	6, 18, 20, 29
Bleecher, Kathleen	1725	37
Bluford, Monique	1733	6, 38
Bohanan, Read	2232	37
Bold, Taylor	1729	37
Bolgar, Zander	1789	35, 37
Bontempi, Richard	2265	37
Boone, Hannah	1978	37

Name	Submission #	Comment Groups
Boorman, Rick	2439	8, 11, 14, 16, 27
Brandel, Wendy	1900	10, 27, 38, 39
Brandel, Wendy	1930	8, 38
Brayman, Barb	2472	37
Brecher, Hannah	1749	22, 38
Brem, James	2338	8, 21, 38, 39
Bridge	2468	39
Brod, D	2168	37
Brodfuehrer, Sean	2085	35, 37
Brounscheidel, Nicholas	2230	37
Brown, Cecelia	2436	13, 35, 37
Brown, Corey	1857	27, 38
Brown, Laura	1862	37
Brown, Lily	2219	37
Brown, Xyier	2159	18
Browsen, Ellen	2446	37
Buckland, Lois	2300	37
Bumanis, Jonathon	2480	37
Burch, Steve	2410	8, 31, 38
Burgos, Alexander	1998	37
Burgward, Garrett	2444	12, 29, 37, 40
Burkhardt, Ellen	2059	31
Busalachi, Carol	1840	37
Buska, Nicole	2451	37
Butler, Frank	1849	37
Byrd, PhD, Gary	2197	37
Bystrak, J	2053	37
C,	1847	37
C,	2070	17, 18
C,	2080	10
C, Amy	2245	37
C, B	2015	40
Caie, John	2255	37
Canazzi, James	2261	37
Capitano, Mike	2294	37
Capitano, Peter	2203	37
Capitano, Sam	2314	37
Cardiff, Isabel	2024	37
Carluccio, Anthony	1890	10, 17, 37
Carter, Darvon	2390	37
Caspian, Emyri	2259	37
Castillo, Alex	2248	4, 12, 35

Name	Submission #	Comment Groups
Castillo, Alexander	2440	37
Castillo, Alexander	2467	12, 25, 37
Castillo, David	2280	35
Castro Mery, Gabriella	2003	16, 20, 37
Celik,	1741	37
Chapman, Marc	2247	37
Cheli, El	2442	20, 37
Chen, Jordan	1870	10, 37
Chevez, Robert	2378	37
Chiaravalle, Barbara	1901	4, 38
Chow, Jason	2167	23, 37
Churco, Emily	1976	37
Clark, Alyssa	2367	37
Clark, Brian	2141	37
Clements, Sally	2339	6, 37
Clift, Aaron	1711	37, 40
Cmelko, Daniel	2155	10, 33, 38
Coleman, Caitlin	1919	37
Coleman, Troy	1754	37
Collins, Michael	2033	37
Conmy, Mike	2047	33
Conner, Michael	2060	6, 37
Conway, Scott	1856	6, 12, 35, 37
Conway, Scott	2453	12, 35, 37, 39
Copping, Erin	1719	37
Corbett, Denise	1910	38
Cornejo, Peter	2279	38
Costa, Christopher	1788	4, 5
Cottrell, Alyssa	1911	10, 37
Coughlin, Joseph	2153	8, 34, 38
Cox, Alexander	2056	6, 37
Creech, Christopher	2057	20, 37
Creek, Karen	2304	37
Crimmen, Laura	2019	16, 20, 38, 40
Daddario, Michelle	1878	37
Dagostino, Vincent	2312	37
Daley, K	2143	10, 37
Daniel, Hazel	1937	37
Daniel, Hazel	2365	35
DAquino, John	2445	8, 35, 37
Darling, A.	1801	37
Dean, Scott	2422	11

Name	Submission #	Comment Groups
Decicco, Abby	2443	9, 10, 22, 37
Dee, Gerald	2108	37
Dee, Gerald	2387	37
Deegan, Nathaniel	2214	37
Delaney, David	1949	37
Delardi,	1753	37
Delgado, Jeremy	2301	37
Demcko, John	2166	12, 13, 35
Demerest, Barbara	2371	34, 38, 39
Denson, Richard	1957	37
DePasquale, Mary	1988	22, 37
DePlanche, Jonathan	2350	4, 5, 6, 7, 10, 13, 38
DeSantis, AICP, Thomas J.	2374	4, 8, 11, 18, 29, 35, 37
DeSantis, Kathy	2179	37
DesJardins, Julianne	1750	4
Devon Skufca, Devon Skufca	2251	37
Dewey, Lauren	2020	8, 38
Diamico, Jenna	2130	37
Dickerson, Aiden	2359	7, 37
Didrichsen, Samantha	2379	37
Diebold, John	2188	4, 7, 31
Diebold, John	2276	1, 4, 8, 40
Dillon, Jp	2400	8, 35, 37
DiRocco, Christina	2158	35, 37
DOE, John	1959	6, 38
Doerr, David	2046	37
Dolan, Matthew	2313	37
Doran, Linda	1879	5, 7, 32, 33, 38
Dory,	2213	38
Dowling, Carey	2299	37
Doyle, Sean	2258	37
Drews, David	2224	37
Dublino, Guinevere	2372	37
Dunlap, Josef	1940	37
Durrani, Ali	2171	37
E,	2101	20, 39
Eagan, Jason	2068	37
Eagan, Julia	2208	37
Edeki, Rumiko	2151	37
Edmond, Steven	2322	37
Eichinger, Arthur	2006	37
Elardo, Kasie	1855	20, 37

Name	Submission #	Comment Groups
Ellis, Aaron	1740	37
Ellsworth, MaryKay	2413	8, 13, 29, 34, 38
ERMER, THOMAS	1968	10, 11, 27, 38
Ermer, Tom	2272	6, 10, 12
Errico, Thomas	2069	38
Ersing, Thomas	2254	37
Espejo, Eva	2403	20, 37
Esposito, Joe	1780	6
Evans, William	2470	37
F,	1770	37
F,	1897	8, 32, 38
Fabbiano, Stephen	1756	18, 37
Fabbiano, Steve	1902	20
Falank, Ellen	2089	37
Faulhaber, Alex	2345	35
Fecio, Christopher	1908	10, 37
Federczyk, Wasyl	2309	37
Feist, Nathan	2202	37
Fetzko, Lukas	1722	35
Fetzko, Lukas	2220	37
Figueroa, Nate	2250	37
Finan, Carly	1987	37
Fischer, John	2240	32, 38
Fischer, John	2249	37
Flores, Mauricio	2402	21
Foels, Nicholas	2163	37
Forester, Skylar	1727	37
Fowler, Brandon	1777	37
Francavilla, Susan M.	2375	4, 8, 34, 40
Francavilla, Vincent J.	2376	14, 38, 40
Frazie, Jazmine	2399	37
Fredericks, Brian	2241	4, 7, 10, 15, 29
Frelier, Abigail	2237	12, 29, 35, 37
French, Jeremy	2291	37
Fretwell, Alisah	2373	37
Fuchs, Andrew	1812	35, 37
Fuchs, Andrew	2461	37
Fuller, Douglas	2325	37
Fuller, Scott	2324	37
Funke, Doug	2417	35, 37
Funke, President, Douglas	2336	3, 6, 24, 27, 35, 37
Fuzak, Jonathan	2189	37

Name	Submission #	Comment Groups
G,	1714	37
Gable, Kimberly	2426	2, 8, 38
Gallant, Robert	2014	10, 38
Gambrel, Grady	2072	37
Gantert, Morgan	2268	37
Gantert, Steve	2326	37
Garrison, Olga	2044	2, 38
Garwol,	1929	11, 21, 27, 38
Garwol,	2107	34
Gavelis, Ever	1782	18, 35, 37
Giangreco-Marotta, Joseph	1989	10, 37
Gibson, Joseph	1974	12, 35, 37
Giessert, Jane	1951	15
Gifford, Hosanna	2176	37
Gigliano, Dan	2456	38
Gillen, Pat	2428	38
Glennie, Christa	2087	37
Goldfuss, Kevin	2308	37
Good,	1739	8, 37
Goodfellow, Ranay	2385	37
Gordon, Barbara	2362	37, 39
Gordon, James	2412	37
Graham, Laura	2354	10, 24, 29, 33, 34, 38
Graveheart, Tony	2267	37
Graves, Kitrina	2036	14, 33, 38
Green, Jack	1934	37
Green, Ron	2462	27, 38
Greene, Joshua	1887	37
Grigorenko, Nikolay	1805	32, 38
Grimes, Zoe	2207	35
Grimley,	2093	4
Groat, Linda Joy	2327	37
Gulick, Andrew	2134	11, 29
Haage,	1896	18, 37
Hagerty, Lizzie	2212	12, 37
Halt, Diane	2081	8
Halt, Shannon	1793	2, 6, 8, 30, 38
Hamann-Burney, Jamie	1986	37
Harris, Ethan	2392	37
Hart, George	1784	18, 37
Hasley, Deb	2469	34
Hasse, Jennifer	1864	10, 20, 21, 28, 37

Name	Submission #	Comment Groups
Hathaway, Bonnie	2353	4, 5, 27, 32, 38
haxton, larry	1763	8, 14
Hechman, Gary	2421	7, 21, 38
Heckman, Gary	2174	6, 38
Heckman, Gary	2182	38
Heckman, Gary	2185	10
Heigl, Dan	1921	6, 38
Heimburger, Joseph	1771	6, 37
Heist, Cheryl	2298	37
Hellstrom, Mike	2295	37
Hellwig, Tana	2328	37
Henderson, Joshua	2211	37
Henneberg, Morgan	1787	37
Henneberg, Morgan	2458	8, 37
Hennessy, Thomas	2358	4, 6, 7, 10, 16, 21, 23, 27, 38, 39
Henry, Howard	1796	37
Henry, Nick	2448	10, 34
Herbert, Edler	1766	35, 37
Heuser, Julian	2139	37
Hill, Evan	2025	37
Hobai, Olivia	2284	37
Holevinski, Gabriella	1990	37
Holly, Otto	2005	37
Holly, Otto	2181	37
Holly, Otto	2363	37
Homer, Katie	1794	37
Hoppespink, Chris	2449	33, 38
Horbowicz, Denise	1761	6, 11, 32
Horbowicz, Denise	2106	15, 38
Horbowicz, Jeffrey	1762	38
Horigan, Lucas	1894	37
Horigan, Lucas	2226	37
Hossain, Adnan	1895	18, 37
Hossain, Adnan	2349	37
Houle, Catherine	2407	37
Htoo, Christabel	1738	37
Huebbers, Louis	2216	8, 39
Hughes, Michael	2154	37
Hull, Tim	2098	37
Hull, Tim	2386	37
Hunt, Lloyd	1860	37
Husted, Simon	2194	35

Name	Submission #	Comment Groups
Irizarry, Anaïs	1735	37
Isch, Edward	2263	37
J, Jon	1885	38
Jakubiec, Maria	2256	37
james, denise	2271	37
James, William	2455	38
Jameson-Blowers, Sydney	2145	37
Jarvis, Annie	2344	37
Jarvis, Hugh	1880	35, 37
Jarvis, Jon	2289	38
Jarzynski, Quentin	1713	37
jocrillz,	2201	37
Johnston, Steven	2383	37
Jordan, Drew	2076	1, 4, 8, 38, 40
Jordan, Drew And Marilyn	1813	11, 15, 27, 28, 38
Juang, Valerie	2206	37
K,	1743	6, 37
K,	1898	37, 40
K,	2079	37
Kanalley, Ryan	2156	35, 37
Kapuscinski, Kevin	2244	14
Kasperski,	1790	5
Kasperski, Joseph	1786	8, 20, 35, 37
Kasperski, Kaitlin	1795	10, 13, 18, 20, 22, 23, 28, 37
Kaufman, Jesse	1939	20
Keller, Mike	2318	37
Kennedy, Oliver	2452	12, 37
Kennelly, John	2239	38
Kennelly, Renee	2037	8, 23, 38
Kerr, Elizabeth	2027	4, 37
Kessler, Kayla	2236	12, 35, 37
King, Everett	2423	21
King, Lauryn	2137	37
King, Sydney	1964	11, 37
Kish, Dan	2217	38
Kliber, Karen	2030	17, 18, 23
Knox, Mark	2282	8
Koepnick, Richard	2193	37
Kostowniak, Kristin	2000	37
KOVEN, NOAH	1808	37
Kowal, David	2427	11, 38
Kowalczewski, Jeff	2099	20

Name	Submission #	Comment Groups
Kowalewski, Roseallise	2118	37
Kowalski, Christopher	2049	10
Kozlowski, Barbara	2113	6
Krakowski,	2169	37
kraske, susan	2355	10, 26, 38
Kratt, Sadie	1965	37
Krolewicz, Christine	1967	37
Kubiak, Barbara	2408	38
Kujawski, Peter	1828	37
Kulpa, Brian	2395	36
Kuty, Tyler	1726	35
L,	1751	18, 37
L,	1825	8, 37
L,	1926	37, 39
L,	2091	18
Lacey, Jonathan	1996	37
Laforme, Joseph	2307	37
Lagno Mian, Theodore	1942	20, 37
Lahey, Matt	2437	37, 39
Lane, Joseph	2278	38
Lane, Joseph	2331	8, 27, 32, 38
Lane, Joseph	2430	8, 27, 38
Larosa,	1945	38
LaShomb, Jack	2466	11
Lavallee, Charles	2233	37
Lazzara, A	1915	37
Lazzara, Leah	1916	37
Leader, Alexandra	1861	37
Leahy, Matt	2223	37
Leahy, Matthew	1734	35
Leahy, Maura	1803	37
leatherbarrow, evan	1917	37
Lee, Christian	2117	37
Lefler, Mark	1973	37
Leighton, Jeb	1924	20, 21, 37
Leone, Thomas	2204	37
Licata, Domenic J.	2135	11
Liker, Jeff	1779	37
Lillis, Dawson	1918	37
Lindhome, Liz	1712	37
Liscavage, William	2473	38
Lisk, Jessica	1836	37

Name	Submission #	Comment Groups
Lock, Mathias	2297	37
LoHouse, Hope	2013	37
lojacono, jp	2286	37
Lottes, Bonnie	2054	4, 11, 35, 37
Louie, Cal	1997	21, 37
Lum, Dale	2209	37
Lyberg, Robert	1720	37
M,	1758	37
M,	1797	10, 37
M,	1821	37
M,	1841	37
M,	2022	18, 37
M,	2064	37
M,	2083	12
M,	2104	37
MacLean, Scott	2052	37
Majoravich, Ezri	1905	5
Malikowski, Paul	1909	20, 37
Malkiewicz, Mark	1871	37
Maloney-Stassen, Heather	1800	2, 4, 5, 6, 7, 25, 27, 39
Mangus, Matthew	2311	37
Manos, Jay	1920	6
Maragliano, Alex	1744	37
Mardini, Amal	2055	38
Margulis, Sue	2195	37, 39
Marris, Laura	1975	37
Marsh, Dwayne	2351	37
Martin, Malaysia	1809	37
Marzec, Emma	2157	10, 14, 17, 37
Mason, Tamara	2183	32
MASTERS, JOHN	1807	6, 10, 38
Mavissakalian, Greg	2405	37
Mavrogeorgis, Andrew	1769	37
May,	1723	6, 37
MAY, Matthew	2097	37
McCabe, Lin	1935	38
McCarthy, Sean	1876	37
McDuffie, Jeremy	2199	4
McEvoy, Sarah	1983	10, 37
McHugh, Alex	2172	12, 19, 35, 37
McKinnon, Kayla	2192	37
McLaughlin, Sophia	2419	37

Name	Submission #	Comment Groups
McLaughlin, Zoe	1893	37
McMillan, Patrick	2026	10, 11, 38
McMillan, Patrick	2066	11
McMillan, Patrick	2067	11, 38
McNamara, Jo	2346	35
McNamara, Shannon	1903	6, 10, 23, 38
McNamara, Susan	1852	6, 10, 33
McNamara, Susan	1906	6, 10, 38
McNeill, Mary	2009	10, 37
Meares, Cavan	2161	37
Mecca, Anthony	2305	37
Menchini, Mike	2471	38
Messinger, Bianca	1859	35
Meyer, Quinton	2464	37
Meyer, Quinton	2476	37
Miller, Heather	2335	14
Miller, Tim	2050	16
Minney, Robert	2222	37
Miron, Ryan	1961	18, 37
Miss, John	2429	14
Miss Sr., John	2474	38
Miss, Otto	2475	38
Mitschow, Mark	1889	32, 38
Mohamed, Asiya	1992	23, 37
Monin, Jeremy	2177	10, 12, 35
Morrell, Wes	1736	37
Moses, Judi	2281	38
Moses, Ken	2012	6, 11, 33, 38
Mossios, Jeanne	2285	38
Mueller, Jim	2478	38
Mukherjee, Asmita	2382	37
Murawski, Executive Director, Chris	2333	35, 37, 39
Muzina, Julie	2162	37
N, J	1858	6
NA, Dillon	2450	2, 37
NA, Ethan	2415	7, 12, 19, 37
NA, NA	2420	39
NA, NA	2425	4
NA, NA	2433	37
NA, NA	2434	38
NA, NA	2435	38
Naber, Thomas	1960	35, 37

Name	Submission #	Comment Groups
Nabzdyk,	2007	37
Nardone, Bailey	2200	35, 37
Nason, Michael	2231	37
Needell, Tom	1799	37
Neilsen, Natalie	1892	37
New, Edward	1922	27
Nichols, Deborah	2165	13
Nichols, Peter	2454	38
Nicpon, Justin	2264	37
Nieves, Roberta	2377	39
Noworyta, Paul	1730	37
O,	2109	10
O, Donna	1948	38
Oberst, Alan	2441	37
Oberst, Alan K	2369	4, 18, 35, 37
oboyle, elizabeth	2381	37
Olson, Charles	2316	37
Onyema, Chidiebere	2306	37
Ostrander, Chris	1993	37
P,	1742	18, 35, 37
P,	1760	17, 37
P,	1798	7, 35
P,	1804	37
P,	1822	7, 12
P,	1824	37, 40
P,	1845	37
P,	1851	37
P,	1873	8
P,	1882	37
P,	2021	37
P,	2042	37
P,	2071	21, 37
P,	2075	5
P,	2078	37
P,	2084	37
P,	2092	37
P,	2102	37
P,	2105	39
P,	2132	37
P,	2150	37
Pagliaccio, Vincent	1914	10, 37
Palmer, Sara	1972	2, 20, 35

Name	Submission #	Comment Groups
Parker, Jason	2086	21, 29, 37
Pasnik, Jeffrey	2094	18, 37
Patel, Arnav	2149	37
Paul, Ana	2342	35
Paul, Paull	2404	12, 37
Percy, Ethan	1746	4, 35, 37
Perez, Anthony	2460	4
Perzhita, Paul	2221	37
Peters, Dan	1781	6, 10
Petit, Allyn	1963	38
Petit, Craig	1962	32, 38
Phelan, Kim	1875	37
Phillips, Travis	2293	37
Piazza, Sean	1819	8, 18, 20, 37
Pietrowski, Frank	2252	37
Pike, William	1717	35, 37
Plesa, Carol	2115	11, 33, 38
Plesa, Edward	2127	33, 38
Plumb, Christopher	1783	20, 37
Pokigo, Cory	2388	37
Port,	2160	37
Port, Anthony	2341	37
Porter, Darrell	1981	37
Potocki, Susan	2077	8
Ppppp, Pppp	2275	38
pr,	2274	38
Preiss, Alexander	1715	37
Pritchard, Braden	1969	37
Q,	1881	37
Quiram, Jamey	2186	5, 37
R,	1833	37
R,	1843	20, 37
R,	1883	7
R,	2110	10
Raddant, Andrew	2337	36
Ragonese,	2175	18
Rallo, Xavier	1755	37
Randall, Bernice	2432	37
Rauch, Bridge	2384	37
Rauch, Bridge	2416	37, 39
Reddin, Jim	2187	37
Redmond, Brandon	2140	37

Name	Submission #	Comment Groups
Reichert, Karen	2352	5, 7, 11, 25, 27, 29, 30, 32, 33, 34, 38
Reid, Fiona	1745	37
Reumann, Kayla	2029	37
Richter, W	1806	8, 15, 38
Rimar, Patrick	2041	8, 38
Ripley, Thomas	2008	10, 37
Riter, Timothy	2323	37
Roberts, Marquel	2257	37
Robinson, Joshua	2016	2, 10, 37
Rogers, Benjamin	1731	37
Rogers, Sharyn	1984	10, 22, 32, 38
Rosa, Elenia	2144	35
Rotundo, Rebecca	2004	37
Rubin, Rich	1874	37
Rumsey, Clayton	2242	35, 37, 39
Ryan, Catheryn	2043	20, 37
S,	1886	16, 23
Safe, Jacob	2198	37
Salamanca, Kenneth	2147	29, 37
Sanchez, Catherine	2112	39
Santiago, Andrew	2073	37
Santos, Lucas	1982	12, 37
Santos, Lucas	2431	19, 37
Sauer, Meghan	1868	37
Sauter, Amanda	1810	29, 37
Sayeedi, Akif	2228	37
Schaeffer, Dennis	1752	2
Scharf, Mars	2031	37
Schifferle (Phillips), Alyssa	2370	37
Schifferle, Lauren	2364	37
Schifferle, Lisa	2361	37
Schmit, Peter	1818	13, 18, 37
SCHOBER, ROBERT	2393	5, 10, 33, 38
Schragel, Jamie	1946	38
Schreiner,	1941	38
Schultz-Leone, Lisa	2296	37
Scott,	1931	12, 37
Seekstone, Brian	1826	37
Seibold, Ben	1767	37
Selecter, Spencer	2170	35, 37
Selevan, Joseph	2190	37

Name	Submission #	Comment Groups
Seneca, Geraldine	2389	37
Seney, Planning Director, Brendan	2334	22, 35, 37
Sera, Michele	2477	37
Shames, Kayla	1732	37
Sherman, Elizabeth	2028	37
Shippens, Eve	1854	21, 37
Sibert,	1827	37
Siemer Harvey, Isabella	1933	37
Siller, Jennifer	2283	32
Simpson, Melissa	2062	38
Sims, Tremaine	2205	37
Singh, Madhuri	2178	37
Skinner, Justin	2262	37
Skotarczak, Teagan	2229	37
Slish, Nathanael	2148	11, 14, 20, 21, 33, 38
Smith,	1834	32, 38, 39
Smith, Karen	2366	37
Snyder, Rebecca	1952	7
Snyder, Stacy	2129	10
Sojka, Tyler	2391	37
Song 19, Winter	2196	37
Spicciati, Dennis	2321	37
Sponaugle, Bianca	1792	37, 39
Spoth, Katherine	2235	37
St Thomas, Jonathan	1944	4
Stacey, Justin	2225	37
Stachnik, Jen	1985	7, 37
Stalteri, Frank	2287	8, 20, 39
Stanton, Emma	1953	37
Steinberg, Steve	2424	38
Stewart,	1891	2, 10, 37
still, stephen	2136	18, 37
Stirking, Zak	2138	37
Stiver, Ken	2340	37
Streeter, Abigail	2048	15, 37
Stuart, Curtis	2184	4, 6, 37
Stump, Ben	1724	37
Stynes,	1999	14, 34, 38, 39
Supples, Mark	1848	38
Swanekamp, Tammy	1912	38
Swerdlin, Matt	1748	2, 15, 32, 38
Szymkowski, Katelyn	1956	37

Name	Submission #	Comment Groups
T,	2065	37
T,	2133	8
Tait, Aaron	2218	37
Tamez, Shelsea	1747	37
Taylor, Randall	2260	37
Teller, Brandon	1877	17, 37
Thapa, Dilasha	1737	37
Thompson, Harrison	1888	5, 6, 7
Thompson, Trey	1774	10, 35
Thundat, Jonah	2380	37
Tilley, Xavier	2180	35
Todaro-Squier, Elias	1932	2, 20, 37
Tomasello, Angelo	2317	37
Tomasello, james	2290	37
Tooley,	1765	37
Tran, Julia	2343	37
Trapper,	2191	38
Trinder, Stephen	2035	37
Turchiarelli, Benjamin	2023	37
Turton, Zachary	2045	35, 37
Tyrpak, Jeffrey	2253	37
U, Abigail	2051	38
Unson, Ian	2210	37
Utz, B	2010	8
Utzig, Kevin	1772	4, 10, 38
Utzig, Sarah	1773	10
V,	1817	8
V,	1927	35
V,	2103	37
Valenzuela, Julianna	2277	37
Vallone, Rick	1716	37
Van Houten, Gary	2238	37
Van Valin, Bob	2088	10, 37
Veitengruber, Mark	1980	11, 37
Verrelli, Matthew	2409	37
Victor, Tim	1811	37
Victor, Tim	1995	37
Victor, Tim	2266	37
Vidovich, Joel	2465	15, 29, 38
Viglione, Jackson	1977	37
Vigorito, Vicki	2114	32, 34, 38
Volpe, Chuck	2039	38

Name	Submission #	Comment Groups
Voytovich, Joseph	2164	10, 11, 13, 40
W,	1759	17, 37
W,	1823	5, 13
W,	1872	21, 37, 40
Wahl, Cheryl	1830	15
Waits, Khari	1991	11, 37
Walker, Sharon	2246	37
Walkinshaw, Jacob	1979	35, 37
Walters, Gary	2243	39
Warner, Joseph	2368	35
Warrior, Alyssa	2152	18, 35, 37
Weber, Kevin	1718	37
wedgewood, ian	2356	10, 26, 38
Weekes, Michael	2329	39
Weidner, Liam	2394	20, 37
Wellman,	2116	37
Wesley, Charlie	1869	6
White, Brian	1785	2, 8, 32, 38, 39
Wick, Jeff	1842	6, 37
Wick, Patrick	1837	37
Wilczewski, J	1994	37
Wilkinson, Elizabeth	2414	4, 8, 10, 15, 26, 32, 33, 38, 39
Wilkowski, John	2457	24
Williams, Deborah	2034	38, 39
Williams, Theo	1970	37
Wiltberg, Katherine	2332	4, 6, 10, 16, 23, 27, 38
Wiltberger, Katherine	2357	25, 38
Wiseman,	1831	27
Wodsiadich, William	2459	6, 38
Workman-Miles, Sandra	2401	37
Wright, Melinda	1971	5, 37
Wujek, Tom	1775	5, 6, 7, 37
X,	1928	37
X,	2063	37
X,	2111	37
Y,	1850	37
Yale, Kristy	1923	2, 18, 37
Yanko, Jo	2348	35
Yaple,	1838	21
Yass, Myram	1776	11, 38
Z,	1832	37
Z,	1844	17

Name	Submission #	Comment Groups
Z,	2082	8
Zgoda, Ashlyn	2018	37
Zimmerman, Nathan	2001	6, 11, 17, 32, 38, 40
Zizzi, Lee	2320	37

C.3.2 Agencies

Agency Comment Submissions and their Associated Comment Group(s)

Name	Section Identification
Environmental Protection Agency	C.5.1
Department of the Interior	C.5.2
New York State Department of Transportation	C.5.3
Town of Amherst New York	C.5.4

C.4 COMMENTS AND RESPONSES

As described, a single submission may include multiple comments. These individual comments have then been organized by common comment themes and grouped into Comment Groups. Provided below are the Comment Groups and Project responses. Each comment group is listed using the DEIS document structure and organization. Each Comment Group includes a synopsis, a list of the submission numbers in the comment group, and a Project response.

Metro appreciates all comments made about the DEIS and the Project. Comments will be considered as the EIS is finalized and the Project moves into final design.

C.4.1 Executive Summary

C.4.1.1 Comment Group 1: Executive Summary

C.4.1.1.1 SYNOPSIS OF COMMENTS

The executive summary is specifically criticized for beginning with a sentence that is overly long and unfocused.

Submission Numbers: (2076) (2276)

C.4.1.1.2 RESPONSES

The DEIS opening sentence of the Executive Summary introduces the lead agency and Project corridor and includes acronyms that are used later. The sentence length is needed to introduce these important details. In addition, the sentence is consistent with other Project documentation as well as Project scoping documents.

C.4.2 Chapter 1 Purpose and Need

C.4.2.1 Comment Group 2: Project Need Sentiment

C.4.2.1.1 SYNOPSIS OF COMMENTS

Commenters question the need for the Project, citing stagnant or declining population, increased remote work, and perceived low current ridership. Several commenters expressed that Amherst and Tonawanda are predominantly car-dependent suburban communities with existing transportation options, including UB's shuttle system, that adequately serve local needs.

Commenters expressed concern with the DEIS Purpose and Need chapter not addressing post-pandemic commuting trends.

Commenters also expressed support for the Project and its potential to improve access for underserved populations, reduce car dependency, and stimulate regional development.

Commenters request that the FEIS and Record of Decision more transparently evaluate alternatives, justify costs, and reflect both current and projected transit needs.

Submission Numbers: (1748) (1752) (1785) (1793) (1800) (1891) (1923) (1932) (1972) (2016) (2044) (2426) (2450)

C.4.2.1.2 RESPONSES

Chapter 1, Purpose and Need and Appendix A1, Project Purpose and Need present the purpose and need for the Project. The Purpose and Need Statement provides the rationale and justification for undertaking a major Federal action and forms the basis for the alternatives to be studied in the environmental document.

The purpose of the Project is to link established and emerging activity centers (e.g., UB campuses, BNMC, the Buffalo central business district, employment and retail centers, and the Buffalo waterfront) along the existing Metro Rail line in Buffalo with existing and emerging activity centers in Amherst and Tonawanda by providing fast, reliable, safe, and convenient transit. The need for increased mobility and transit service that the Project would serve has three main components: (1) serve existing and future travel demand generated by recent and future regional development; (2) provide high-quality regional transit service; and (3) improve service for transit-dependent populations. For more details including data supporting the Purpose and Need Statement, refer to Chapter 1, Purpose and Need and Appendix A1, Project Purpose and Need of the DEIS.

Metro developed an Opinion of Probable Cost for each Project Build Alternative using the FTA Standard Cost Categories (SCC). The Opinion of Probable Cost for the LRT Build Alternative and BRT Build Alternative are presented in the Chapter 3, "Supplemental Analysis" of the FEIS, based on 15% design of each Build Alternative and will be refined as the Project design continues to advance. The Opinion of Probable Cost is expressed as a range given the

preliminary nature of the Project's design. See Chapter 3, "Supplemental Analysis" for the additional assumptions used by Metro when developing the Opinion of Probable Cost ranges.

The EIS is intended as a regulatory document for projects that may seek Federal funding and as such follows standard industry practices and Federal and state guidelines. Detailed information presenting the data and methodologies used to evaluate study area travel demand is presented in Chapter 3, "Transportation," Appendix C1, "Transportation Technical Report," and Appendix C2, "Travel Demand Forecasting" of the DEIS. Refer to the response provided under Comment Group #11.

C.4.2.2 Comment Group 3

No comments were categorized as comment group 3.

C.4.3 Chapter 2 Alternatives Considered

C.4.3.1 Comment Group 4: Build Alternatives

C.4.3.1.1 SYNOPSIS OF COMMENTS

Commenters expressed concerns about the Project alignment, construction methods, and long-term impacts of the Project. Nine commenters advocate for underground routing (LRT Build Alternative) to reduce noise, visual disruption, and property impacts, especially in residential areas, while others suggest alternative alignments that better serve commercial zones and avoid complex intersections. Key issues expressed as it relates to the LRT Build Alternative include congestion on Niagara Falls Boulevard, emergency vehicle access, and property impacts.

Suggestions include extending the tunnel from University Station, moving the tunnel transition to at-grade further north along Niagara Falls Boulevard, adding public parking at stations, and an elevated LRT Build Alternative (on structure) near Sheridan Drive.

Commenters suggested inclusion of signal priority for at-grade segments, dedicated lanes for BRT, improved park-and-ride facilities, and more context-sensitive design to balance community concerns with transit goals.

Commenters expressed concern related to the Project's cost, its focus on serving UB students, and whether it reflects broader regional needs, with some recommending investing in other corridors like the airport or medical district.

Commenters also expressed support for the Project, emphasizing the benefits of improved access for low-income and transit-dependent populations, and the potential for increased ridership and sustainability.

Submission Number: (1746) (1750) (1772) (1788) (1800) (1901) (1944) (2027) (2054) (2076) (2093) (2184) (2188) (2199) (2241) (2248) (2276) (2332) (2350) (2353) (2358) (2369) (2374) (2375) (2414) (2425) (2460)

C.4.3.1.2 RESPONSES

The preliminary design of the LRT Build Alternative does not assume that the alignment will be elevated or placed on structure. Current design concepts assume the transition from the underground tunnel from University Station to at-grade near the intersection of Niagara Falls Boulevard and Kenilworth Avenue. An extension of the tunnel transition to a location further north on Niagara Falls Boulevard will affect the Project's Opinion of Probable Cost. As Project design advances, Metro will carefully consider design options for the tunnel as suggested by commenters.

As documented in the EIS, the proposed alignment for the Build Alternatives assumes using the existing Northbound travel lanes of the John James Audubon Parkway. See Chapter 2, "Alternatives Considered," Chapter 3, "Transportation," and Section 4.1, "Property Acquisitions" (Appendix A of the FEIS) for more information. Please also refer to responses for Comment Group #15 which discusses property acquisition.

Metro will carefully consider these comments as the Project moves toward implementation, particularly as they relate to the environmental findings documented within this EIS.

The BRT Build Alternative assumes the use of signal priority at all existing signalized intersections and dedicated lanes for approximately 80 percent of the alignment. The remaining 20 percent of the alignment will be at-grade in mixed traffic. For more information, please refer to Chapter 2, "Alternatives Considered" and Appendix B1, "Alternatives Considered Supplemental Information" of the DEIS.

The Project's Opinion of Probable Cost is based on preliminary design concepts for each Project Build Alternative using the FTA Standard Cost Categories. The Opinion of Probable Cost will be refined as the Project design continues to advance. The Opinion of Probable Cost is expressed as a range given the preliminary nature of the Project's design. Metro will carefully consider these comments as the Project moves toward implementation. Refer to the response provided for Comment Group #8.

As described in Chapter 2, "Alternatives Considered" of the DEIS, the Project was identified through an iterative process that included stakeholder feedback. Metro and the Greater Buffalo-Niagara Regional Transportation Council (GBNRTC) initiated an Alternatives Analysis process in 2012 to evaluate high-quality public transit service alternatives between Downtown Buffalo, Buffalo's Main Street Metro Rail Corridor, and the Town of Amherst. The Alternatives Analysis evaluated 36 rail and bus alternatives and identified a preferred alternative after reviewing the technical results and considering feedback from the Project Steering and Technical Advisory Committees and the public. A detailed description of the development and identification of alternatives is documented in Appendix B1, "LRT Build Alternative and BRT Build Alternative Supplemental Information" of the DEIS.

The Niagara Falls Boulevard LRT Build Alternative was defined as the best performing alternative for the following reasons:

- It provides access to the second highest number of jobs and serves the highest number of community activity centers.
- It serves the corridor with the most projected growth in population and employment as forecasted by GBNRTC.
- It is deemed as the best at encouraging and supporting future economic growth specifically at proposed station areas which are defined as transit-oriented development.
- It serves the highest number of projected transit riders, provides the greatest capacity to serve these riders, with the shortest travel time between key destinations in the corridor.
- It does not require a transfer at the Metro Rail University Station.
- It resulted in the largest positive reduction in automobile vehicle miles traveled.
- The Niagara Falls Boulevard LRT Build Alternative is the most consistent with local and regional plans and strategies, such as the Amherst Comprehensive Plan and One Region Forward (Regional Plan for Sustainable Development).

For information on the Project's potential effects to study area communities and the environment, refer to Chapter 3, "Transportation," Chapter 4, "Environmental Considerations," and Chapter 5, "Section 4(f)" of the DEIS (Appendix A of the FEIS).

C.4.3.2 Comment Group 5: Build Alternative Stations

C.4.3.2.1 SYNOPSIS OF COMMENTS

Commenters raised concerns and suggestions regarding the Project. They emphasized the need for station maintenance and advocated for level boarding at all platforms to enhance accessibility. They proposed renaming the I-990 station to "Muir Woods" to reflect the adjacent development and suggest renaming UB campus stations for clarity. Commenters also recommended advanced signaling technologies to improve operational efficiency and safety.

Commenters express concerns about the practicality and placement of several proposed stations. Commenters suggest reevaluating station locations to better serve high-traffic areas. Commenters suggest proposed UB campus stations are too close together and may not significantly improve student mobility and propose relocating the Boulevard Mall station to a safer and more accessible location within the mall's easement, rather than in the median of Niagara Falls Boulevard.

The commenters also highlight broader planning concerns, including the impact of winter weather on pedestrian access, the proposed alignment along John James Audubon Parkway. They question the equity of station placement, suggesting that the current plan disproportionately benefits UB over the broader community. They recommend reducing the total number of

stations to improve travel time and efficiency and urge further market research to ensure stations are placed where ridership demand justifies them.

Submission Numbers: (1775) (1775) (1775) (1788) (1790) (1800) (1823) (1879) (1888) (1888) (1905) (1971) (2075) (2186) (2350) (2352) (2353) (2393)

C.4.3.2.2 RESPONSES

Comments seek additional details on design, such as the location of specific amenities, alignment design, streetscape elements, station locations, and parking. Station locations were chosen to serve rider catchment areas (population and employment clusters) and key destinations, as well as the need to maintain adequate station distances to ensure effective transit operations. The EIS evaluates the Project's effects using preliminary Project design concepts, including the practicality and placement of proposed stations to serve high-traffic areas. Metro will carefully consider the appropriate number of station locations during engineering and design to ensure efficient travel times while providing community access.

The current preliminary design concepts incorporate level boarding at all proposed stations. Metro acknowledges the concerns raised regarding station maintenance and safety and will give these comments careful consideration as the Project advances toward implementation.

As documented in the EIS, the proposed alignment for the Build Alternatives assumes using the existing Northbound travel lanes of the John James Audubon Parkway. Metro will consider these comments as the Project moves toward implementation, particularly as they relate to the environmental findings documented within this EIS. Public outreach will continue during preliminary and final design of the Project.

The current preliminary design concepts incorporate investments in wider shoulders for snow storage where feasible. Metro is committed to developing agreements with municipal and state stakeholders to define an efficient mechanism for snow removal.

As documented in the EIS, specifically Tables C-22 through C-24 and Tables C-30 through C-32 in Appendix C, “Travel Demand Forecasting” of the DEIS, the Project is forecasted to serve riders making home-based work trips which are riders travelling on the Project from home to their place of employment. Trips made by students are not included in this forecasted trip type but are documented under the home-based other forecasted trip type.

C.4.3.3 Comment Group 6: Alternate Alignment Considerations

C.4.3.3.1 SYNOPSIS OF COMMENTS

Commenters express interest in future Metro Rail expansions beyond the current Project, particularly to the Buffalo Niagara International Airport, Orchard Park and the new Bills Stadium, Cheektowaga, and the East Side of Buffalo. Commenters also support extending

service to the Depew Amtrak station and Niagara Falls to improve regional connectivity and tourism access.

Commenters question the current proposed alignment, suggesting that Millersport Highway would be a more direct and less disruptive corridor between UB's campuses, arguing that Millersport is already used by UB buses and offers available real estate with fewer impacts on existing businesses and residences. Concerns are raised about the proposed route's potential to harm local commerce, referencing past disruptions caused by the original Metro Rail construction on Main Street. Some commenters propose alternative transit solutions such as flexible bus services to better serve changing community needs.

Submission Numbers: (1723) (1733) (1743) (1761) (1771) (1775) (1780) (1781) (1793) (1800) (1807) (1839) (1842) (1852) (1856) (1858) (1869) (1888) (1903) (1906) (1920) (1921) (1959) (2001) (2002) (2012) (2040) (2056) (2060) (2113) (2174) (2184) (2272) (2332) (2336) (2339) (2350) (2358) (2459)

C.4.3.3.2 RESPONSES

The focus of the EIS is the Buffalo-Amherst-Tonawanda corridor. The Buffalo-Amherst Tonawanda corridor is the highest priority for transit expansion due to higher existing and potential future transit ridership, a larger concentration of population and employment, more opportunity for future development and the ability to connect three of the region's major economic development engines, UB, the Buffalo Niagara Medical Campus and downtown Buffalo. Planning for additional corridors identified as having potential for high quality transit expansion may be considered in the future, as a separate effort.

As described in Chapter 2, "Alternatives Considered" of the DEIS, the Project was identified through an iterative process that included stakeholder feedback. Metro and the Greater Buffalo-Niagara Regional Transportation Council (GBNRTC) initiated an Alternatives Analysis process in 2012 to evaluate high-quality public transit service alternatives between Downtown Buffalo, Buffalo's Main Street Metro Rail Corridor, and the Town of Amherst. The Alternatives Analysis evaluated 36 rail and bus alternatives and identified a preferred alternative after reviewing the technical results and considering feedback from the Project Steering and Technical Advisory Committees and the public. A detailed description of the development and identification of alternatives is documented in Appendix B1, "LRT Build Alternative and BRT Build Alternative Supplemental Information" of the DEIS.

The Niagara Falls Boulevard LRT Build Alternative was defined as the best performing alternative for the following reasons:

- It provides access to the second highest number of jobs and serves the highest number of community activity centers.

- It serves the corridor with the most projected growth in population and employment as forecasted by GBNRTC.
- It is deemed as the best at encouraging and supporting future economic growth specifically at proposed station areas which are defined as transit-oriented development.
- It serves the highest number of projected transit riders, provides the greatest capacity to serve these riders, with the shortest travel time between key destinations in the corridor.
- It does not require a transfer at the Metro Rail University Station.
- It resulted in the largest positive reduction in automobile vehicle miles traveled.
- The Niagara Falls Boulevard LRT Build Alternative is the most consistent with local and regional plans and strategies, such as the Amherst Comprehensive Plan and One Region Forward (Regional Plan for Sustainable Development).

For information on the Project's potential effects to study area communities and the environment, refer to Chapter 3, "Transportation," Chapter 4, "Environmental Considerations," and Chapter 5, "Section 4(f)" of the DEIS (Appendix A of the FEIS).

C.4.3.4 Comment Group 7: Proposed Build Alternative Design Concepts

C.4.3.4.1 SYNOPSIS OF COMMENTS

Commenters provide a range of technical and operational suggestions, as well as concerns and support for the proposed LRT Build Alternative. They recommend increasing the system voltage to reduce the number of substations, advocate for regenerative braking, and suggest procuring new LRT vehicles. Commenters emphasize the importance of maintaining a frequent schedule to retain ridership and proposed an 8-minute headway during peak times.

Commenters expressed interest in the Project if ample free parking and a robust schedule are provided. However, they raise concerns about the projected 23-minute end-to-end travel time, suggesting it may be less competitive than driving. Commenters question the alignment's operational feasibility, particularly proposed 150-170 degree turns, citing potential wear and constructability issues, and request clarification on tunnel boring methods. Commenters question the DEIS's justification for the Locally Preferred Alternative, citing a lack of origin-destination analysis and question whether the alignment serves actual travel demand.

Commenters also raise concerns about impacts to residential areas, particularly in the northern segment, including noise, vibration, and wildlife disruption. They note potential flooding issues at the Niagara Falls Boulevard/Maple Road intersection and emphasize the need for infrastructure improvements. They advocate for protected bike lanes and signal priority for the LRT Build Alternative. Commenters also request that automobile capacity be preserved for those who will continue to rely on cars. Lastly, they question the utility of intermediate stations between South Campus and Boulevard Mall, suggesting limited demand in those areas.

Submission Numbers: (1757) (1775) (1798) (1800) (1822) (1879) (1883) (1888) (1952) (1985) (2188) (2241) (2350) (2352) (2358) (2359) (2415) (2421)

C.4.3.4.2 RESPONSES

The current preliminary design concepts for the LRT Build Alternative incorporate industry design standards and modeling practices related to track turning radii. These are based on assumed operational speed, track superelevation, and vehicle characteristics to support efficient operations. Metro acknowledges the concerns raised regarding track design and will carefully consider these comments as the Project progresses toward implementation.

As outlined in the EIS, the tunnel construction method for the LRT Build Alternative does not assume the use of a tunnel boring machine, but rather mechanical excavation. The power and system requirements necessary to operate the LRT Build Alternative remain under evaluation. Metro acknowledges the concerns raised regarding bicycle facilities and will consider these comments as the Project progresses toward implementation. Refer to Comment Group #12.

Metro will thoroughly consider and address concerns about flooding at the Niagara Falls Boulevard and Maple Road intersection during Project design. For further details on stormwater impacts resulting from Project construction, see Chapter 4, Section 4.10, "Water Resources," and Chapter 4, Section 4.17, "Construction Effects" of the DEIS.

Regarding station locations, see Section C.4.3.2.2, "Responses" (Comment Group #5) addressing the practicality and placement of proposed stations to serve high-traffic areas.

Implementation of the preliminary Project design concept is not anticipated to materially reduce automobile capacity of local roadways as discussed in Section C.4.4.1.2, "Responses" or refer to Comment Group #10.

Responses addressing the proposed characteristics of each Build Alternative, as well as the Project's potential effects on study area communities and the environment are provided herein, corresponding to the relevant sections of the EIS.

C.4.3.5 Comment Group 8: Project Costs, Funding, and Other Concerns

C.4.3.5.1 SYNOPSIS OF COMMENTS

The commenters express opposition to the Project, primarily citing concerns over cost, financial sustainability, and neighborhood impacts. Commenters question the justification for the Project cost estimate, arguing that the current system is underutilized, heavily subsidized, and not self-sustaining. Several commenters state that the expansion would place an undue financial burden on taxpayers, particularly Amherst residents, and doubt the projected ridership figures, especially outside of the UB's academic calendar. Concerns are also raised about the long-term operational deficits and the reliance on uncertain Federal or state funding.

Commenters also express concerns with the safety and maintenance of the existing Metro Rail system, with multiple commenters describing current stations as unsafe and poorly maintained. Commenters advocate for reallocating funds toward improving existing infrastructure, enhancing security, and increasing service reliability, particularly during events.

Commenters also express support for the Project, emphasizing the need for equitable public investment in Buffalo and Amherst, similar to other regional projects.

Submission Numbers: (1739) (1757) (1763) (1785) (1786) (1793) (1806) (1817) (1819) (1825) (1873) (1897) (1930) (1938) (1954) (1955) (2010) (2020) (2037) (2041) (2076) (2077) (2081) (2082) (2133) (2153) (2216) (2276) (2282) (2287) (2331) (2338) (2374) (2375) (2400) (2410) (2413) (2414) (2426) (2430) (2439) (2445) (2458)

C.4.3.5.2 RESPONSES

The Project's Opinion of Probable Cost is based on preliminary design concepts for each Build Alternative, developed using the FTA Standard Cost Categories guidelines. This cost estimate is subject to change as the design progresses. Given the preliminary nature of the Project's design, the Opinion of Probable Cost is expressed as a range. Metro acknowledges commenters' concerns regarding cost and will carefully consider this feedback as the Project moves toward implementation. Additionally, should the Project proceed and seek Federal funding, it will be required to demonstrate cost-effectiveness as part of the FTA Capital Investment Grant application process. The inclusion of this Opinion of Probable Cost is provided in Chapter 3, "Supplemental Analysis" of the FEIS as follows:

"Metro developed an Opinion of Probable Cost for each Project Build Alternative using the FTA Standard Cost Categories. The FTA Standard Cost Categories were implemented to establish a consistent format for the reporting, estimating, and managing of capital costs for Projects that anticipate seeking Federal funding. The Opinion of Probable Cost is a draft, based off 15% design of each Build Alternative and will change as the Project design continues to advance. The Opinion of Probable Cost is expressed as a range given the preliminary nature of the Project's design. In addition, Metro assumed the following when developing the opinion of probably cost ranges.

- Standardized station configurations within UB North Campus have been designed but do not account for enhanced urban integration features desired by UB. An allowance for customized architectural finishes is included for UB North Campus stations.
- Property acquisition at UB North Campus is anticipated to be an in-kind contribution and not included.
- Final Project operating plan (proof of concept) and vehicle selection will be completed during final design and may result in changes for both Build Alternatives.

- Roadway, signal, and pedestrian investments in support of the Project are included.
- No change to the existing Metro Rail service is assumed.
- Only probable cost for capital is included and does not include any finance charges.
- Capital costs are expressed in 2025 dollars as well as 2032 dollars or the anticipated year of expenditure (mid-point of anticipated construction activities).

The LRT Build Alternative's Opinion of Probable Cost is between \$1,580 Million and \$1,940 Million in 2025 dollars. The LRT Build Alternative's Opinion of Probable Cost is between \$2,010 Million and \$2,470 Million in 2032 dollars.

The BRT Build Alternative's Opinion of Probable Cost is between \$690 Million and \$860 Million in 2025 dollars. The BRT Build Alternative's Opinion of Probable Cost is between \$880 Million and \$1,090 Million in 2032 dollars."

At this stage of Project development, Metro has not defined or secured funding for the implementation or operation of the Project. Should the Project advance and pursue Federal funding, Metro will be required to demonstrate financial viability, including evidence of stable and reliable financing sources to support construction, maintenance, and operations as stipulated by the FTA Capital Investment Grant application process.

Related to maintenance of proposed stations for each Build Alternative, Metro has provided a response as part of Comment Group #5. Related to alignment of each Build Alternative, Metro has provided a response as part of Comment Group #6.

C.4.3.6 Comment Group 9: Other Comments on Build Alternatives

C.4.3.6.1 SYNOPSIS OF COMMENTS

Commenters expressed a desire for clean, safe, and functional mass transit in Buffalo and Western New York, emphasizing that the Project does not become an engineering failure. Commenters also indicate a willingness to use the system, particularly when weather conditions make other modes of travel difficult and encourage decision-makers to prioritize what is best for the region. Comments seek additional details on design, such as the location of specific amenities, alignment design, streetscape elements, station locations, and parking.

Submission Numbers: (2040) (2443)

C.4.3.6.2 RESPONSES

The analysis of the Project's effects is based on preliminary Project design concepts which include proposed station locations that are located at forecasted high ridership concentrations with good access to the surrounding community. During outreach efforts associated with the Project, community input expressed an interest in a station near Decatur Road, which is included

in the current design after technical assessment of its viability. Regarding maintenance of proposed Build Alternatives, Metro has provided a response as part of Comment Group #5.

C.4.4 Chapter 3 Transportation

C.4.4.1 Comment Group 10: Traffic Assessment of the Proposed Build Alternatives

C.4.4.1.1 SYNOPSIS OF COMMENTS

Commenters express a range of views regarding the Project’s alignment along Niagara Falls Boulevard and Maple Road. Comments cite concerns about traffic congestion (on Niagara Falls Boulevard, Maple Road, in the Consumer Square and Boulevard Mall area, and on local streets), lane reductions, noise pollution, and long-term disruption to neighborhoods and businesses.

Commenters also express support for the Project, emphasizing the potential for reduced car dependency, improved regional connectivity, and enhanced access to downtown Buffalo and UB campuses. These commenters highlight benefits such as decreased congestion, fewer vehicle emissions, and safer, more walkable streets. They also point to the importance of providing reliable alternatives to driving, especially in high-density areas, and note that the Project could help address long-term transportation needs as the region grows.

Commenters request more detailed traffic impact data, including current daily traffic counts and capacity projections for each affected road segment. Concerns are also raised about emergency vehicle access, property access limitations due to track placement, and the potential for diverted traffic to overwhelm residential streets. Some question the long-term viability of the Project, suggesting that existing bus services could be expanded instead, and urged coordination with other infrastructure projects to avoid duplicative spending. Some question the accuracy of traffic volume projections in the DEIS (Table 3-4), suggesting they do not reflect post-pandemic commuting patterns or recent retail developments.

Submission Numbers: (1757) (1768) (1772) (1773) (1774) (1781) (1795) (1797) (1807) (1852) (1864) (1870) (1890) (1891) (1900) (1903) (1906) (1908) (1911) (1914) (1943) (1968) (1983) (1984) (1989) (2008) (2009) (2014) (2016) (2026) (2049) (2080) (2088) (2090) (2109) (2110) (2129) (2143) (2155) (2157) (2164) (2177) (2185) (2241) (2272) (2332) (2350) (2354) (2355) (2356) (2358) (2393) (2414) (2438) (2443) (2448)

C.4.4.1.2 RESPONSES

Detailed traffic data collection and analysis methodologies are presented in Appendix C1, “Transportation Technical Report” of the DEIS (Appendix A of the FEIS). As documented, Metro compared existing traffic volumes collected in 2018 (pre-COVID pandemic) with spot counts collected post-pandemic and found that 2018 volumes were higher on average. To conservatively assess potential traffic effects, Metro used the 2018 volumes in the EIS to represent a worst-case scenario. Metro is committed to updating traffic data, traffic patterns, and

analyses as Project design progresses to ensure an accurate evaluation of the Project's impact on study area traffic. As part of this updated traffic analysis, Metro is also committed to conducting a detailed traffic diversion analysis as it related to roadway configuration changes along Niagara Falls Boulevard.

Regarding disruption to neighborhoods and businesses, measures are proposed to ensure stations maintain community character. Tracks would be embedded to make them flush with the roadway, removing any physical barrier. In addition, Metro is committed to developing a detailed access management evaluation and plan to assess property access limitations during construction and operation. Section 4.4, "Neighborhoods and Communities" of the DEIS (Appendix A of the FEIS) addresses this in more detail.

As the Project progresses toward implementation, Metro has been and will continue to coordinate with the appropriate emergency response entities to ensure community safety and address emergency response requirements. Accordingly, the current preliminary design includes embedded track along Niagara Falls Boulevard and Maple Road, featuring a mountable curb that separates the Project alignment from general-purpose traffic. This design is intended to enable emergency vehicles to access and traverse the Project alignment as needed to bypass general traffic.

Responses addressing the proposed characteristics of each Build Alternative, as well as the Project's potential effects on study area communities and the environment are provided herein, corresponding to the relevant sections of the EIS document.

C.4.4.2 Comment Group 11: Forecasted Travel Demand and Ridership

C.4.4.2.1 SYNOPSIS OF COMMENTS

Commenters express a mix of opposition and support for the Project in regard to ridership. Opposition includes concerns about projections, existing use of the buses, and that the Project will primarily be used by UB students. Support includes improved mobility, reduced costs for commuters, and attracting new riders. Commenters also are concerned about the Project's cost-effectiveness.

Commenters question the justification for replacing existing NFTA bus routes, which they observed to be underutilized, with a costly light rail system. They argue that the projected ridership, particularly among non-UB populations, appears overstated. Some raise legal concerns, noting that Federal funding cannot be used for projects that primarily benefit a single institution, and requested more transparent data on current and projected ridership, especially for Amherst and Tonawanda residents.

Commenters propose lower-cost alternatives, such as enhancing existing bus service or piloting a bus route along the proposed alignment to assess demand before committing to the LRT Build Alternative construction. Concerns are also raised about the environmental impact of increased

vehicle idling due to lane reductions, as well as the potential for increased emissions and traffic congestion.

Other commenters support the expansion, citing the need for improved public transit options to reduce car dependency, traffic congestion, and emissions. These commenters emphasize the benefits of a direct, transfer-free connection between UB's North Campus and downtown Buffalo, noting that even car owners use the Metro Rail for events and commuting. Some also highlight the potential for increased transit use if service becomes more reliable and accessible and call for better pedestrian and bicycle infrastructure, including protected bike lanes, along the proposed corridor.

Submission Numbers: (1761) (1776) (1813) (1929) (1964) (1968) (1980) (1991) (2001) (2012) (2026) (2054) (2066) (2067) (2115) (2134) (2135) (2148) (2164) (2352) (2374) (2422) (2427) (2439) (2466)

C.4.4.2.2 RESPONSES

Detailed traffic data collection and analysis methodologies are presented in Appendix C1, "Transportation Technical Report" of the DEIS. As documented, Metro compared existing traffic volumes collected in 2018 (pre-COVID pandemic) with spot counts collected post-pandemic and found that 2018 volumes were higher on average. To conservatively assess potential traffic effects, Metro used the 2018 volumes in the EIS to represent a worst-case scenario. Metro is committed to updating all traffic data, traffic patterns, and analyses as Project design progresses to ensure an accurate evaluation of the Project's impact on study area traffic. As part of this updated traffic analysis, Metro is also committed to conducting a detailed traffic diversion analysis as it related to roadway configuration changes along Niagara Falls Boulevard.

Also documented in Appendix C1, "Transportation Technical Report" of the DEIS is the methodology for developing future year travel demand estimates. The EIS is intended as a regulatory document to disclose potential environmental impacts resulting from the Project as directed by law. Regarding future travel demand, the EIS coordinated with and uses the GBNRTC adopted socioeconomic projections to estimate future traffic volumes and projected ridership estimates. GBNRTC is a federally designated Metropolitan Planning Organization (MPO). An MPO is designated to carry out the metropolitan transportation planning process for urbanized areas with populations over 50,000, as determined by the U.S. Census.¹ In accordance with 23 CFR 450.300 and 49 U.S.C. 5303, MPOs must develop a long-range transportation plan that incorporates adopted socioeconomic projections, including anticipated growth in population, employment, and development.

Metro is committed to updating traffic data, traffic patterns, travel demand data and analyses as Project design progresses to ensure an accurate evaluation of the Project's impact on study area

¹ www.transit.dot.gov

traffic. Refer to C.5.3 New York State Department of Transportation comment responses for more information.

Detailed transit ridership data collection and analysis methodologies are presented in Appendix C2, “Travel Demand Forecasting” of the DEIS. Ridership forecasts are based on historical and current data provided by Metro and UB. For the EIS, Metro utilized the FTA Simplified Trips-on-Project Software (STOPS) model. The STOPS model is a transit ridership forecasting tool designed to support projects seeking Federal funding through the Capital Investment Grant program. The STOPS model calibration for the Project was updated using post-pandemic ridership counts, socio-economic projections, and zone-to-zone highway travel times to reflect more recent transit demand patterns. As the Project advances toward implementation, these ridership forecasts will be revisited to ensure accuracy, particularly in support of the FTA Capital Investment Grant application.

Metro will consider these comments as the Project moves toward implementation, particularly as they relate to the potential for “pilot” services and proposed Project service characteristics. Responses addressing the proposed characteristics of each Build Alternative (e.g., pedestrian infrastructure in Comment Group #12), as well as the Project’s potential effects on study area communities and the environment (e.g., air quality) are provided herein, corresponding to the relevant sections of the EIS document.

C.4.4.3 Comment Group 12: Pedestrian and Bicycle

C.4.4.3.1 SYNOPSIS OF COMMENTS

Commenters express support for the inclusion of bike lanes and pedestrian infrastructure as part of the Project, emphasizing the importance of safety and accessibility for non-motorized users. Comments advocate for protected or physically separated bike lanes rather than painted lanes, citing frequent collisions between vehicles and cyclists in the area and the high traffic volumes on Niagara Falls Boulevard and Maple Road. Some suggest design alternatives such as shared-use paths with buffers or barriers, and two-way protected bike lanes to improve comfort and usability for cyclists of all ages and abilities.

Commenters also note that current conditions make walking and biking along these corridors unsafe and unpleasant, particularly during peak shopping hours or in areas with limited sidewalks. They emphasize that improved infrastructure could encourage more people to choose biking or walking over driving, especially if paired with reliable transit options. There is also interest in seeing the areas around new stations redeveloped to be more pedestrian-friendly, with amenities that support transit riders rather than large, car-oriented parking lots.

Submission Numbers: (1768) (1822) (1856) (1931) (1974) (1982) (2083) (2131) (2166) (2172) (2172) (2177) (2212) (2236) (2237) (2248) (2272) (2404) (2415) (2444) (2452) (2453) (2463) (2467)

C.4.4.3.2 **RESPONSES**

The Project's Opinion of Probable Cost, based on preliminary design concepts for each Build Alternative, includes an assumption for capital investments in bicycle and pedestrian improvements, encompassing both infrastructure enhancements and safety measures. The installation of embedded track along Niagara Falls Boulevard and Maple Road will establish a uniformly level surface at signalized intersections and designated crossing areas. This infrastructure enhancement will facilitate safe and convenient crossings for pedestrians and cyclists throughout the Project alignment on Niagara Falls Boulevard, Maple Road, and within the UB North Campus. The Project will also put resources into upgrading sidewalks, crosswalks, and bike lanes wherever possible along the Project alignment. For more information, refer to Chapter 2, "Alternatives Considered" and Chapter 3, "Transportation" in the DEIS. Metro will carefully consider this feedback as the Project advances toward implementation, particularly with respect to pedestrian and bicycle infrastructure.

As documented in the response to Comment Group #10, Metro is committed to developing a detailed access management evaluation and plans to assess potential property access conflicts and associated safety concerns during both construction and operation phases of the Project.

C.4.4.4 **Comment Group 13: Transportation Safety and Security**

C.4.4.4.1 **SYNOPSIS OF COMMENTS**

Commenters express both support and concern regarding the traffic and safety implications of the LRT Build Alternative as outlined in Chapter 3, "Transportation" of the DEIS. Some support including physical separation and rail crossing gates, noting these features would enhance safety and improve train efficiency. Others extend this support to similar features proposed under the BRT Alternative, recognizing their value in maintaining safe and reliable transit operations.

Commenters also raise safety concerns related to the proposed center-running station design on Niagara Falls Boulevard and Maple Road, arguing that placing stations in the median of high-traffic corridors would increase pedestrian risk. Specific concerns are raised about pedestrian behavior, particularly individuals rushing to catch transit vehicles, which could lead to accidents in these busy corridors. The proximity of Sweet Home Middle School and the potential disruption to student safety and traffic flow during and after construction are also highlighted as critical issues.

Additional concerns include the impact of reducing traffic lanes to a single through-lane in each direction, particularly in scenarios involving emergency vehicles, garbage collection, or traffic stops. Commenters note that such conditions could lead to congestion and safety hazards, as vehicles would have limited space to maneuver around obstructions without encroaching on bike lanes.

Submission Numbers: (1795) (1818) (1823) (2164) (2165) (2166) (2350) (2413) (2436)

C.4.4.2 RESPONSES

Comments seek additional details on design, such as the location of specific amenities, alignment design, streetscape elements, station locations, and parking. The assessment of the Project's effects is based on preliminary Project design concepts.

Metro will consider concerns raised by commenters regarding at-grade crossings where vehicle and pedestrian traffic intersect the Project alignment and remains committed to evaluating the use of crossing gates and other design solutions for both Build Alternatives. Future design efforts will include a hazard analysis to identify all safety concerns and develop appropriate solutions related to at-grade crossings. This is particularly true for Maple Road near Sweet Home Middle School. As the Project moves toward implementation and seeks federal funding through FTA Capital Investment Grant application program, Metro is required to complete a Project risk assessment, risk register, and provide detailed safety and security plans.

As documented in the response to Comment Group #12, the Project's Opinion of Probable Cost includes an assumption for capital investments in bicycle and pedestrian improvements, encompassing both infrastructure enhancements and safety measures. Metro will carefully consider this feedback as the Project advances toward implementation, particularly with respect to pedestrian and bicycle safety.

As documented in the response to Comment Group #10, Metro has been and will continue to coordinate with the appropriate emergency response entities to ensure community safety and address emergency response requirements. Accordingly, the current preliminary design includes embedded track along Niagara Falls Boulevard and Maple Road, featuring a mountable curb that separates the Project alignment from general-purpose traffic. This design is intended to enable emergency vehicles to access and traverse the Project alignment as needed to bypass general traffic.

The installation of embedded track along Niagara Falls Boulevard and Maple Road will establish a uniformly level surface at signalized intersections and designated crossing areas. The Project's conceptual design assumes a center-running configuration along portions of the Project alignment. This center-running configuration is defined as transit service operating in the center of the roadway which requires transit riders to cross only one direction of automobile travel lane(s) to access a station rather than crossing both directions of travel. This design concept ensures fewer conflicts between pedestrians and vehicles.

This infrastructure enhancement will facilitate safe and convenient crossings for pedestrians and cyclists throughout the Project alignment on Niagara Falls Boulevard, Maple Road, and within the UB North Campus. The Project will also put resources into upgrading sidewalks, crosswalks, and bike lanes wherever possible along the Project alignment. For more

information, refer to Chapter 2, “Alternatives Considered” and Chapter 3, “Transportation” in the DEIS.

Metro will consider these comments as the Project moves toward implementation, particularly as it relates to the environmental findings documented within this EIS.

C.4.5 Chapter 4, Section 4.1 Property Acquisitions

C.4.5.1 Comment Group 14: Impacts to Residents and Businesses

C.4.5.1.1 SYNOPSIS OF COMMENTS

Commenters express concern about the potential for property acquisition and displacement resulting from the Project, particularly along Niagara Falls Boulevard and Maple Road. Commenters, including long-term residents and business owners, cite specific properties listed in the DEIS as being subject to full or partial acquisition, including homes and businesses with decades of community presence. Commenters are apprehensive about the use of eminent domain, the loss of generational investments, and the emotional and financial toll on those who may be forced to relocate. Commenters emphasize that the DEIS (Table 4-2) does not fully account for the long-term impacts on property values, community cohesion, or the cumulative tax revenue losses beyond the first year.

Commenters who are business owners highlight the substantial investments made in their properties and the essential services they provide to the community. They express concern with the proposed takings and construction disruptions leading to permanent closures, job losses, and the erosion of neighborhood character.

Additionally, commenters question the adequacy of the proposed mitigation measures in Section 4.1, “Property Acquisitions,” arguing that compensation would not restore lost equity or community value.

Submission Numbers: (1763) (1999) (2036) (2148) (2157) (2244) (2273) (2335) (2376) (2429) (2439)

C.4.5.1.2 RESPONSES

The Project was developed to minimize impacts on private property; however, some displacements will be necessary, as shown in Chapter 4.1, Potential Property Acquisitions and Displacements. As Project design advances, Metro will coordinate with affected property owners and tenants to develop means to avoid or minimize property acquisitions and displacements. Private property owners are and will be protected according to federal and state law. Potential property acquisition activities, including relocations, will be performed in accordance with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 (Uniform Act) as amended and Federal Transit Administration Circular 5010.1D, Grants

Management Requirements and all applicable New York State laws that establish the process through which Metro may acquire real property through a negotiated purchase or through condemnation. As documented within the EIS, Metro is committed to the following mitigation measures and assurances regarding property acquisition:

- Metro is required by law under the Uniform Act, §24.102(a) to make every reasonable effort to acquire property expeditiously by negotiation, (b) as soon as feasible, Metro will notify the owner in writing of its interest in acquiring the real property and inform them of the basic protections provided by law, (c) property appraisals will be made and owner can accompany, (d) before negotiations, Metro sets a just-compensation amount based on the approved appraisal or waiver valuation, including damages or benefits to the remaining property, and Metro then sends a written purchase offer, and Metro will abide by §24.102(e) through (n).
- Metro will make all reasonable efforts to contact the owner or the owner's designated representative and discuss its offer to purchase the property, including the basis for the offer of just compensation and explain its acquisition policies and procedures, including its payment of incidental expenses in accordance with §24.106. The owner shall be given reasonable opportunity to consider the offer and present material which the owner believes is relevant to determining the value of the property and to suggest modification in the proposed terms and conditions of the purchase.
- As part of the preparation procedure for the Acquisition Stage Relocation Plan, site occupants will be interviewed to determine their specific relocation needs.
- The acquisition and relocation assistance program will be conducted in accordance with the requirements and standards of the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 as amended or as may be amended, as authorized by Section 30 of New York's Highway Law and implementing Rules and Regulations (Part 101, Title 17, and NYCRR).
- All site occupants will be furnished a copy of an information booklet and will be fully informed of all benefits to which they may be entitled.
- No site occupant will be required to move from his or her property without at least 90-days written notice.
- Comparable replacement housing will be offered to all residential occupants.

To satisfy the requirements of the Uniform Act, Metro is also committed to providing advisory services for displaced people. The availability, characteristics, and cost of comparable replacement housing in the area, at the time of relocation, will be compared with the housing needs of the displaced households, and measures will be proposed to resolve special relocation needs. The following is a list of proposed mitigation measures:

- Relocation assistance and just compensation is appropriate as a mitigation measure in accordance with the Uniform Act, which establishes a policy for the fair and equitable treatment of persons displaced as a result of Federal and federally assisted programs (49 CFR part 24.1).
- Relocation assistance will be offered to all relocated people without discrimination.
- The relocation program will be carried out in an orderly, humane, and timely fashion.
- During relocation, care will be taken to move displaced businesses to a similar area in terms of traffic counts and demographics. Current Assessed Values (equalized) in the towns of Amherst and Tonawanda will provide a good basis to understand an order of magnitude value, though a Uniform Act compliant appraisal will be used for specific transactions. To minimize costs of acquiring partial acquisitions and easements, care will be taken to minimize the effect on parking, specifically for retail/restaurants, as parking loss can significantly increase the fair market value of the offer presented to the property owner.

For detailed information regarding the Property Acquisition and Displacement mitigation measures that Metro has committed to, please refer to Section 4.1.3, “Potential Mitigation Measures” of the DEIS (Appendix A of the FEIS).

Metro will consider the concerns raised by commenters regarding real property and potential displacements. These comments will be carefully considered as the Project moves toward implementation. Specifically, Metro is committed to evaluating Project design plans with attention to opportunities, where feasible, to reduce the impacts documented in the EIS.

Additional information regarding displacements is provided in response to Comment Group #15.

C.4.5.2 Comment Group 15: Displacements and Proposed Property Acquisitions

C.4.5.2.1 SYNOPSIS OF COMMENTS

Commenters expressed concerns regarding how the Project would affect their businesses along Niagara Falls Boulevard. Commenters expressed opposition to the Project, citing the potential displacement of families and businesses, disruption to densely populated areas, and negative impacts on the tax base for the Sweet Home School District.

Commenters also express concerns regarding the logic behind the proposed roadway changes and the broader implications for community stability. Commenters emphasize the need for fair treatment of affected property owners, recommending that the NFTA provide monetary compensation and relocation assistance. They also propose that the agency begin acquiring properties in advance to facilitate land swaps and reduce the burden on displaced residents and businesses.

Commenters also acknowledge broader community concerns related to health impacts, noise pollution from both construction and train operations, and the emotional toll of being uprooted from long-standing homes. They urge that, should the Project proceed, local governments and

agencies ensure that the needs of impacted residents are fully addressed and supported throughout the process.

Submission Numbers: (1748) (1806) (1813) (1830) (1951) (2048) (2106) (2241) (2414) (2465)

C.4.5.2.2 RESPONSES

The Project was developed to minimize the impacts to private property; however, some displacements would be necessary for implementation, as shown in Chapter 4.1, Potential Property Acquisitions and Displacements. Metro will coordinate with affected property owners and tenants to develop the means to avoid or minimize property acquisitions and displacements. Potential property acquisition activities, including relocations, will be performed in accordance with the Uniform Relocation Assistance and Real Property Acquisition Policies Act of 1970 (Uniform Act) as amended and Federal Transit Administration Circular 5010.1D, Grants Management Requirements and all applicable New York State laws that establish the process through which Metro may acquire real property through a negotiated purchase or through condemnation. As documented within the EIS, Metro is committed to the following mitigation measures and assurances regarding property acquisition as documented in C.4.5.1.2, Comment Group # 14.

For detailed information regarding Property Acquisition and Displacement mitigation measures that Metro has committed to, please refer to Section 4.1.3, “Potential Mitigation Measures” of the DEIS (Appendix A of the FEIS).

Metro will consider these comments as the Project moves toward implementation, particularly as they relate to real property and potential displacements. Specifically, Metro is committed to evaluating Project design plans with consideration towards, where feasible, the opportunity to reduce the impacts documented in EIS.

Responses addressing the proposed characteristics of each Build Alternative, as well as the Project's potential effects on study area communities and the environment are provided herein, corresponding to the relevant sections of the EIS document.

C.4.5.3 Comment Group 16: Property Values

C.4.5.3.1 SYNOPSIS OF COMMENTS

Commenters express concerns with both proposed Build Alternatives due to concerns about hazardous materials exposure during construction, potential declines in property values, and increased traffic and pedestrian safety risks. Commenters disagree with the information provided within the DEIS related to the Project's effect on home values, citing past negative impacts in downtown Buffalo and expressing fear of similar outcomes in Amherst and Tonawanda.

Commenters are concerned about displacement of local businesses and homeowners and believe the Project will harm neighborhood conditions. While acknowledging arguments that transit proximity can increase property values and regional connectivity, they remain unconvinced that these benefits apply locally. They urge reconsideration of the Project and suggest alternative approaches that avoid disrupting residential areas.

Submission Numbers: (1886) (2003) (2019) (2050) (2332) (2358) (2439)

C.4.5.3.2 RESPONSES

As stated in Section 4.15, “Hazardous Materials” of the DEIS, the likelihood of the Project impacting the community through increased exposure to hazardous materials is low, due to contractor requirements for identifying and safely handling such materials in accordance with federal, state, and local regulations, as well as the implementation of environmental mitigation measures. To mitigate anticipated Project construction impacts, final construction plans and contractor requirements will be consistent with federal, state, and local laws.

In regard to property values, studies around the country conclude that access to rail systems is generally valued by property owners, and proximity rarely decreases property values. Benefits depend on service reliability and regional market conditions. Property values along the corridor are not expected to decline as a result of the Project.

As stated in Section 3.4.5, “Safety and Security,” vehicle, bicycle, and pedestrian safety provisions, such as signalization, signage, and infrastructure investments, would minimize conflicts between automobiles, bicyclists, and pedestrians. In addition, EIS Chapter 3 discusses the proposed mitigation strategies (traffic, transit, pedestrian and bicycle, and safety and security) to be implemented to reduce the anticipated impacts.

The Project was developed to minimize impacts on private property; however, some displacements would be necessary if implemented, as shown in Section 4.1, “Potential Property Acquisitions and Displacements”. Metro will coordinate with affected property owners and tenants to develop means to avoid or minimize property acquisitions and displacements. Refer to the responses provided for Comment Groups #14 and #15 for more information regarding proposed mitigation measures.

In regard to concerns about property tax loss, as described in Section 4.1 of the DEIS, Metro conducted a preliminary estimate of the potential loss of property tax revenue that would result from the displacement related to the LRT Build Alternative. The total aggregate property tax loss under the LRT Build Alternative would be a one-time loss of less than one percent of the taxable property value.

Concerns related to property acquisitions and displacements will be carefully considered as the Project moves toward implementation, please refer to C.4.5.1.2, Comment Group # 14. Metro is committed to evaluating Project design plans with attention to opportunities, where feasible, to

reduce the impacts documented in the EIS. Metro will determine whether it is practical to carry out detailed studies of soil conditions and the possible impacts on commercial and residential buildings as the design progresses. As it relates to hazardous materials, refer to Chapter 4, Section 4.15, “Hazardous Materials” and Section 4.17, “Construction Effects” of the EIS for a detailed description of impacts and proposed mitigation measures.

Refer to Comment Group #10 through #13 for more information related to traffic and pedestrian concerns.

C.4.6 Chapter 4, Section 4.2 Land Use

C.4.6.1 Comment Group 17: Land Uses

C.4.6.1.1 SYNOPSIS OF COMMENTS

Commenters recommend leveraging low-density or vacant land near existing and proposed Metro Rail stations for transit-oriented development to attract new residents and address regional housing shortages. They advocate for upzoning within a half-mile radius of the rail corridor to encourage denser residential and mixed-use development, particularly in Amherst and Tonawanda. Commenters noted that Buffalo has historically underutilized this strategy but has seen modest improvements in recent years. They also suggest repurposing underused spaces like the Boulevard Mall for park-and-ride facilities to support the expansion.

Commenters raise concerns that the area has become over commercialized and emphasize that Buffalo’s car-oriented layout makes it easy to travel by car, and therefore robust public transit is not needed.

Submission Numbers: (1759) (1760) (1844) (1877) (1890) (2001) (2030) (2070) (2157)

C.4.6.1.2 RESPONSES

Metro will consider these comments as the Project moves toward implementation, particularly as they relate to land use. Metro has been and will continue to coordinate with the appropriate municipalities and agencies to ensure the land uses allowed near the Project’s proposed stations support transit. The GBNRTC is actively advancing Transit-Oriented Development strategies across the Buffalo-Niagara region, particularly along the Metro Rail corridor. For more information, visit www.gbnrtc.org or contact GBNRTC. Land use is discussed in Section 4.2, “Land Use.” and Appendix D2, “Land Use Supplemental Informational” of the DEIS (Appendix A of the FEIS).

As more information is available, appropriate updates related to the Project will be made available via the Project website (www.nftametrotransitexpansion.com).

C.4.6.2 Comment Group 18: Economic Development

C.4.6.2.1 SYNOPSIS OF COMMENTS

Commenters support the Project to Amherst, emphasizing its potential to stimulate Transit-Oriented Development (TOD) around Metro stations. The Project is seen as a catalyst for dense housing, economic growth, and improved connectivity between Buffalo and Amherst, especially with redevelopment opportunities at the Boulevard Mall and University Plaza. Comments note the importance of integrating UB North and South campuses, citing benefits for students and long-term regional development. Comparisons to successful TOD in cities like Washington D.C. and San Francisco underscore the potential for similar transformation in the Study Area. Suggestions include incorporating stations directly into redevelopment sites and conducting further study on TOD opportunities, referencing past UB real estate development research.

Submission Numbers: (1742) (1751) (1756) (1782) (1784) (1795) (1818) (1819) (1895) (1896) (1923) (1961) (2002) (2022) (2030) (2070) (2091) (2094) (2136) (2152) (2159) (2173) (2175) (2215) (2369) (2374) (2447)

C.4.6.2.2 RESPONSES

Similar to the response to Comment Group # 17, Metro will consider these comments as the Project moves toward implementation, particularly as they relate to economic development opportunities. Metro has and will continue to coordinate with the appropriate municipalities and agencies related to development opportunities, specifically the Town of Amherst and the property owners of the Boulevard Mall. Section 4.2, “Land Uses” discusses economic revitalization and development in more detail. In addition, Section 4.3, “Socioeconomic Conditions” describes the comprehensive TOD planning efforts underway by Metro and GBNRTC.

The GBNRTC is actively advancing TOD strategies across the Buffalo-Niagara region, particularly along the Metro Rail corridor. For more information, visit www.gbnrtc.org or contact GBNRTC.

Comments seek additional details on design, such as the location of specific amenities, alignment design, streetscape elements, station locations, and parking. The assessment of the Project’s effects is based on preliminary Project design concepts.

C.4.6.3 Comment Group 19: Parking Land Uses

C.4.6.3.1 SYNOPSIS OF COMMENTS

Commenters express concern about the lack of pedestrian-friendly amenities around proposed stations, emphasizing that stations should not be surrounded by parking lots. Suggestions include improving sidewalk lighting, adding weather protection such as covered walkways, and coordinating with nearby businesses to enhance pedestrian access. Commenters express support

for replacing park-and-ride lots with mixed-use Transit-Oriented Development to better utilize land and encourage walkability.

Commenters urge NFTA to collaborate with property owners and municipalities to ensure station areas are vibrant, accessible, and integrated with surrounding communities.

Submission Numbers: (2172) (2415) (2431)

C.4.6.3.2 RESPONSES

The proposed Project includes investments in sidewalks and crosswalks with improved bicycle, pedestrian, and wheelchair access. As stated in Section 4.2, “Land Uses,” the proposed stations would be consistent with local plans and policies and would have beneficial land use and environmental impacts that support existing and future development in the station areas and would act as focal points for future growth. DEIS Chapter 3, “Transportation” describes the Project’s parking needs and DEIS Chapter 4, Section 4.1, “Property Acquisitions and Displacements” documents the real property acquisition methodology that considers a substantial loss of parking to private property owners as a real property acquisition impact. In addition, EIS Chapter 4, Section 4.3, “Socioeconomic Conditions” describes the comprehensive TOD planning efforts underway by Metro and GBNRTC. Metro will consider these comments as the Project moves toward implementation, particularly as they relate to opportunities for transit oriented development. Metro has been and will continue to coordinate with the appropriate municipalities and agencies related to development opportunities.

C.4.7 Chapter 4, Section 4.3 Socioeconomic Conditions

C.4.7.1 Comment Group 20: Jobs and Economy

C.4.7.1.1 SYNOPSIS OF COMMENTS

Commenters express a range of perspectives on the economic implications of the Project. Supporters emphasize that the Project would generate both short-term construction jobs and long-term employment opportunities in operations, maintenance, and transit-related services. They cite studies, such as those from the American Public Transportation Association, suggesting that transit investments yield significant economic returns and can stimulate local economies by improving access to employment, education, and commercial areas. Several commenters also highlight the potential for increased workforce mobility, reduced transportation costs, and enhanced social equity, particularly for residents without access to private vehicles. They note that improved transit access could help address economic disparities in the Buffalo metro area, where car ownership is a financial burden for many.

Commenters express concern with the Project, questioning if the Project would lead to meaningful economic development, citing past experiences such as the decline of Main Street following the original Metro Rail construction. They express skepticism that businesses would

relocate or expand due to the rail line and warned that construction disruptions could deter customers and reduce economic activity in the short term. Some also note that the DEIS does not provide concrete economic evidence and cautioned against relying on aspirational projections without clear, measurable outcomes.

Submission Numbers: (1783) (1786) (1795) (1819) (1843) (1855) (1864) (1902) (1909) (1924) (1932) (1939) (1942) (1966) (1972) (2002) (2003) (2019) (2043) (2057) (2099) (2101) (2148) (2287) (2394) (2403) (2442)

C.4.7.1.2 RESPONSES

In regard to short-term job creation, Metro is committed to creating a Workforce Development Strategic Plan as guided by FTA and the New York State Department of Transportation (NYSDOT). This Workforce Development Plan would be initiated in parallel with the final design, final construction plans, and early construction phases and may include consideration of worker safety and health, workforce investment, recruitment and retention, skills development, and local hiring goals. In regard to long-term job growth, Metro is committed to the ongoing evaluation of the Project's effect and benefit on the local and regional economy and will adhere to FTA Capital Investment Grant Program guidelines to detail and justify the Project's ability to provide cost-effective mobility benefits. As more information is available, appropriate updates related to the Project will be made available via the Project website (www.nftametrotransitexpansion.com). Studies completed around the country show that premium transit projects promote job creation through direct jobs related to construction and operation of the Project, improved access to jobs, indirect and induced economic activity, and regional competitiveness that attracts long-term investment.

Regarding the concerns about the intent and content of the DEIS, the EIS is intended as a regulatory document to disclose potential environmental impacts resulting from the Project as directed by law. Regarding future job projections, the EIS coordinated with and uses GBNRTC adopted socioeconomic projections. As discussed in Section 4.3, "Socioeconomic Conditions," while the Buffalo-Niagara region overall is expected to grow slowly, the Amherst/Tonawanda area, especially near the UB North Campus, is forecasted to have higher growth compared to the urban core.

C.4.7.2 Comment Group 21: Households and Population

C.4.7.2.1 SYNOPSIS OF COMMENTS

Commenters emphasize the importance of expanding Metro Rail to support individuals and families with limited or no access to private vehicles, including students, low-income households, and people with disabilities. They highlight how current transit limitations restrict access to jobs, education, and community engagement, and argue that improved rail service would enhance equity, reduce transportation costs, and support a more inclusive and sustainable

region. Others note that expanded transit could help retain residents and attract newcomers by improving quality of life and reducing car dependence.

Commenters also express concern about population and economic growth assumptions, questioning whether projected development and housing demand are realistic. There is also concern about affordability and the disconnect between retail wages and housing costs in areas targeted for redevelopment.

Submission Numbers: (1838) (1854) (1864) (1872) (1924) (1929) (1997) (2071) (2086) (2131) (2148) (2338) (2358) (2402) (2421) (2423) (2447)

C.4.7.2.2 RESPONSES

Metro will consider these comments as the Project moves toward implementation, specifically as they relate to providing improved mobility within the Project study area by increasing transportation options to all. As documented within EIS Chapter 1, “Purpose and Need,” this is a stated purpose and need for the Project. Additionally, improving the accessibility of transit in the study area is a documented goal of the Project.

As stated, the EIS is intended as a regulatory document to disclose potential environmental impacts resulting from the Project as directed by law. Regarding future job projections, the EIS was conducted using GBNRTC adopted socioeconomic projections. Section 4.3, “Socioeconomic Conditions,” provides detailed information about the population and employment projections. GBNRTC is a federally designated Metropolitan Planning Organization designated to carry out the metropolitan transportation planning process for urbanized areas with populations over 50,000, as determined by the U.S. Census.² In accordance with 23 CFR 450.300 and 49 U.S.C. 5303, MPOs must develop a long-range transportation plan that incorporates adopted socioeconomic projections, including anticipated growth in population and employment.

In regard to long-term job growth, Metro is committed to the ongoing evaluation of the Project’s effect and benefit on the local and regional economy and will adhere to FTA Capital Investment Grant Program guidelines to detail and justify the Project’s ability to provide cost-effective mobility benefits. Nationally, transit investments are linked to economic development, expanding housing options and job opportunities.

² www.transit.dot.gov

C.4.8 Chapter 4, Section 4.4 Neighborhoods and Communities

C.4.8.1 Comment Group 22: Community Cohesion

C.4.8.1.1 SYNOPSIS OF COMMENTS

Commenters express both support and opposition regarding the Project's impact on the Towns of Tonawanda and Amherst. Supporters believe the Project will foster economic development, improve regional connectivity, and enhance social cohesion by linking suburban and urban communities, particularly benefiting University at Buffalo students. Opponents argue that the towns are suburban in nature, already adequately served by existing transit options, and that the light rail would disrupt community character and cohesion. Concerns include potential physical and social division caused by new infrastructure.

Submission Numbers: (1749) (1795) (1984) (1988) (2334) (2443)

C.4.8.1.2 RESPONSES

Metro will carefully consider this feedback as the Project advances toward implementation, specifically as they relate to community cohesion. A detailed assessment of the Project's potential effects on community cohesion is provided in Section 4.3, "Neighborhoods and Communities" and Appendix D4, "Neighborhoods and Communities Supplemental Information."

Metro has and will continue to coordinate with relevant municipalities and agencies to ensure the Project supports community cohesion. For example, Metro revised the LRT Build Alternative's track alignment from ballasted to embedded track along Niagara Falls Boulevard, Maple Road, and within the UB North Campus. This design change helps avoid creating physical barriers between neighborhoods on either side of the alignment.

Metro is also committed to advancing station design with community cohesion in mind. Future design efforts will focus on developing station architecture and scale that reflects the local community context. For instance, stations located within residential neighborhoods are anticipated to feature smaller-scale designs consistent with the surrounding residential character. Additionally, Metro anticipates incorporating unique architectural design elements that reflect the identity of each neighborhood.

The EIS is based on preliminary design concepts and Metro acknowledges that Project design is still evolving. Additional detail on design elements such as amenity locations, alignment configuration, streetscape features, station siting, and parking will be completed during final design.

C.4.8.2 Comment Group 23: Community Character and Facilities

C.4.8.2.1 SYNOPSIS OF COMMENTS

Commenters express concern that the Project may disrupt the suburban character of Amherst and Tonawanda, citing potential increased density and unwanted connectivity to urban areas. Some residents feel that existing transportation options are sufficient and that the Project may negatively impact their chosen suburban lifestyle.

Other commenters argue that the Project would improve access to jobs, education, healthcare, and recreation for those without cars, and promote equity and regional cohesion. The Project is seen by supporters as a symbol of progress and a means to connect communities, reduce transportation costs, and enhance public health through increased mobility.

Submission Numbers: (1795) (1886) (1903) (1992) (2030) (2037) (2167) (2332) (2358)

C.4.8.2.2 RESPONSES

Metro will carefully consider this feedback as the Project advances toward implementation, specifically as they relate to community character. A detailed assessment of the Project's potential effects on community character is provided in Section 4.3, "Neighborhoods and Communities" and Appendix D4 "Neighborhoods and Communities Supplemental Information." The Buffalo Comprehensive Plan, the Queen City Hub Plan, outlines areas where growth is encouraged, including transit-oriented development and higher-density, mixed-use neighborhoods along major transit routes like Main Street.

As previously stated, Metro is committed to advancing station design with community cohesion in mind. Future design efforts will focus on developing station architecture and scale that reflects the local community context. For instance, stations located within residential neighborhoods are anticipated to feature smaller-scale designs consistent with the surrounding residential character. Additionally, Metro anticipates incorporating unique architectural design that reflects the identity of each neighborhood served by the proposed station.

The EIS is based on preliminary design concepts, and Metro acknowledges that Project design is still evolving. Additional detail on design elements such as amenity locations, alignment configuration, streetscape features, station siting, and parking will be completed during final design.

C.4.9 Chapter 4, Section 4.5 Visual Quality

No comments

C.4.10 Chapter 4, Section 4.6 Historic and Cultural Resources

No comments

C.4.11 Chapter 4, Section 4.7 Parklands and Recreational Resources

No comments

C.4.12 Chapter 4, Section 4.8 Geology, Soils, and Prime Farmlands

C.4.12.1 Comment Group 24: Geology, Soils, and Prime Farmlands

C.4.12.1.1 SYNOPSIS OF COMMENTS

Commenters express concerns about the potential structural impacts of the Project, often referring to the LRT Build Alternative, on homes and businesses located in areas with known unstable soil conditions, particularly in Amherst and Tonawanda. They reference historical issues with clay soils and poor subsurface conditions, including reports from the U.S. Army Corps of Engineers and past lawsuits related to foundation failures. Specific neighborhoods such as Walton Woods are cited as having widespread foundation damage due to soil instability, and commenters fear that vibrations from light rail construction and operations could exacerbate these problems, leading to further structural deterioration and financial hardship.

Several commenters share personal experiences with foundation cracking, sinking, and water intrusion, attributing these issues to the area's soil composition and past infrastructure changes. They question whether the DEIS adequately assessed the geotechnical risks associated with placing a rail line through such areas and called for more detailed analysis and mitigation planning.

Commenters also raise broader concerns about the long-term viability of building heavy infrastructure in areas with a history of subsidence and poor drainage. They emphasize the need for the Project team to account for the cumulative effects of vibration, soil saturation, and construction activity on aging and vulnerable structures. The DEIS is criticized for not fully addressing these risks in Section 2.3.2, “BRT Built Alternative” and related environmental impact assessments, and commenters urge the NFTA to prioritize resident safety and property protection in future planning stages.

Submission Numbers: (2336) (2354) (2457)

C.4.12.1.2 RESPONSES

Detailed documentation of geotechnical evaluations supporting the EIS and preliminary design are provided in Appendix G1 “Detailed Geology, Soils, and Prime Farmlands Supplemental Information,” Appendix G2 “Geotechnical Recommendations Report,” and Appendix G3 “Geotechnical Data Report” of the DEIS (Appendix A of the FEIS).

The Project’s impact on vibration related issues was studied according to the general assessment procedures outlined in the Federal Transit Administration’s Transit Noise and Vibration Impact Assessment (FTA Report No. 0123, September 2018). Following the FTA guidance, the

vibration analysis assumes the most conservative propagation of vibration from source to receptor and assumes no reduction for vibration propagation based on soil type. Sections 4.12, “Vibration,” 4.17, “Construction Effects,” and 4.18, “Indirect and Cumulative Effects,” as well as Appendix D7, “Noise and Vibration” of the DEIS (Appendix A of the FEIS) provide additional information regarding the vibration analysis.

Chapter 4, Section 4.17, “Construction Effects,” provides information regarding proposed construction impact mitigation measures. Soil types and their limitations for construction will be evaluated in detail during later preliminary and final design of the Project. Metro is committed, to the extent feasible, to conduct detailed geotechnical investigations to assess soil characteristics along the Project alignment, so that construction techniques and environmental safeguards can be developed to address any limitations. Soil stabilization techniques would be used in work areas, both during and after construction, to prevent potential sedimentation of nearby waterways, minimize potential effects to commercial and residential structures, and to minimize other potential soil disturbance effects. In addition, historical issues with clay soils and poor subsurface conditions, including reports from the U.S. Army Corps of Engineers and past lawsuits related to foundation failures will be thoroughly reviewed and considered during the next design stages to avoid, minimize, and/or mitigate similar problems as a result of constructing the Project.

The assessment of the Project’s effects is based on preliminary Project design concepts. Design of the Project is still underway and will be informed by the findings of this EIS. Metro is committed, as feasible, to continued assessments related to the potential Project vibration impacts to individual privately-owned structures as design advances.

C.4.13 Chapter 4, Section 4.9 General Ecology and Wildlife

C.4.13.1 Comment Group 25: General Ecology and Wildlife

C.4.13.1.1 SYNOPSIS OF COMMENTS

Commenters from the Audubon area express concern about the environmental and residential impacts of the Project. Specific issues include potential disruption to wildlife due to development in the past and anticipated noise and vibration from the Project, as well as removing the tree-lined medians. Commenters also requested grassy train tracks over a cement base to minimize wear from use and freeze/thaw cycles, add visual appeal, and provide habitat for insects.

Submission Numbers: (1800) (2352) (2353) (2357) (2467)

C.4.13.1.2 RESPONSES

Detailed documentation of ecology and wildlife evaluations supporting the EIS are provided in Section 4.9, “General Ecology and Wildlife” and Appendix H “General Ecology and Wildlife

“Supplemental Information” of the DEIS (Appendix A of the FEIS). DEIS Chapter 4, Section 4.17, “Construction Effects,” provides information regarding proposed construction impact mitigation measures. The EIS evaluated wildlife impacts by reviewing state and federal species databases and conducting field surveys, then analyzing potential direct and indirect effects under NEPA guidelines with agency coordination to ensure compliance.

Appendix B3, “General Ecology and Wildlife Supplemental Information” of the FEIS provides the U.S. Fish and Wildlife and NYS Department of Environmental Conservation (NYSDEC) determinations related to ecology and wildlife. As documented, Metro is committed to revegetation of areas anticipated to be affected by the Project to the greatest extent practicable with a restoration seed mix plant and species indigenous to Western New York. These efforts would be conducted in accordance with a Landscape Restoration Plan, to be developed during final design and included within the final construction plans. To the extent feasible, Metro will provide this information during later stages of design and implementation.

Additionally, Metro proposes mitigation that may be required for tree cutting in northern long-eared bat habitat. As design advances and scheduling for tree cutting is planned, any mitigation required would be developed in coordination with Federal Highway Administration (FHWA), U.S. Fish and Wildlife Service (USFWS), and NYSDEC. In addition, any potential stream impacts resulting from a design change will be addressed and mitigated in accordance with state and Federal requirements.

The Project lies entirely within the existing transportation right-of-way, which previously disrupted native wildlife corridors as a result of automobile traffic and noise. Additionally, the Project alignment’s current setting is predominantly urban, and the abundance and diversity of local wildlife already reflects a wildlife community that is tolerant and adapted to these conditions. Species that are less tolerant are likely to have left the area and find suitable habitat in surrounding less developed areas.

C.4.14 Chapter 4, Section 4.10 Water Resources

C.4.14.1 Comment Group 26: Water Resources

C.4.14.1.1 SYNOPSIS OF COMMENTS

Commenters raised concerns about existing infrastructure vulnerabilities at the Niagara Falls Boulevard and Maple Road intersection, specifically flooding during heavy rain and the potential complications of pumping to maintain a train tunnel in such conditions. Commenters suggested that additional sewer and drainage improvements may be necessary to support the proposed LRT Build Alternative and asked how the subsurface water would be handled if intercepted during construction.

Submission Numbers: (2216) (2273) (2355) (2356) (2414)

C.4.14.1.2 RESPONSES

The LRT Build Alternative and the BRT Build Alternative would result in a net increase in impervious cover. In addition, the drainage system in the Project Corridor would require updates to accommodate the Project at-grade configurations, facilities, stations, and roadway geometric modifications. Water quality treatment and increased stormwater runoff flows and volumes would be mitigated via new permanent stormwater best management practices (BMPs).

Stormwater BMPs would be designed during final design and would be positioned within the landscape of the existing and proposed right-of-way in accordance with NYSDEC's Stormwater Management Design Manual in such a way that would provide the required water quality treatment, runoff reduction, and peak flow attenuation. See Section 4.10, "Water Resources" and Appendix I3, "Stormwater Treatment Documentation" (Appendix A of the FEIS) for more details on stormwater management.

DEIS Chapter 4, Section 4.17, "Construction Effects," provides information regarding proposed construction impact mitigation measures. Soil types and their limitations for construction will be evaluated in detail during later preliminary and final design of the Project. Metro is committed, to the extent feasible, to conduct detailed geotechnical investigations to assess soil characteristics along the Project alignment, so that construction techniques and environmental safeguards can be developed to address any limitations. Soil stabilization techniques would be used in work areas, both during and after construction, to minimize potential effects to commercial and residential structures, and to minimize other potential soil disturbance effects. In addition, historical issues with clay soils and poor subsurface conditions, including reports from the U.S. Army Corps of Engineers and past lawsuits related to foundation failures will be thoroughly reviewed and considered during the next design stages to avoid, minimize, and/or mitigate similar problems as a result of constructing the Project.

DEIS Chapter 4, Section 4.10, "Water Resources", DEIS Chapter 4, Section 4.17, "Construction Effects", and Appendix I3, "Stormwater Treatment Documentation" detail stormwater requirements for the Project. Flooding, water seepage, and water intrusion in the proposed LRT Build Alternative's tunnels will be managed during final design with pumps and infrastructure constructed like the system that is currently operational in existing Metro Rail tunnel. To the extent feasible, Metro will assess stormwater needs at Niagara Falls Boulevard and Maple Road.

C.4.15 Chapter 4, Section 4.11 Noise and Section 4.12 Vibration

C.4.15.1 Comment Group 27: Noise and Vibration

C.4.15.1.1 SYNOPSIS OF COMMENTS

Commenters express a range of concerns and perspectives regarding noise and vibration impacts from the Project. Residents living near the proposed alignment, particularly in areas like Amherst and the Audubon community, voice fears that operational noise and vibrations could damage home foundations, especially in neighborhoods with known unstable clay soils. These

concerns are heightened by past experiences with foundation issues and skepticism about the effectiveness and consistency of proposed mitigation measures, such as quarterly rail lubrication and wheel truing. Commenters also question the reliability of long-term maintenance and the adequacy of noise mitigation strategies outlined in the DEIS.

Commenters note that the DEIS acknowledges adverse impacts from noise and vibration, and they question if these effects could worsen over time as rail infrastructure ages. They emphasize that even with new equipment, the DEIS assumes best-case scenarios, and that real-world conditions may lead to more significant disturbances. There are also calls for more robust mitigation, such as physical barriers or vibration-dampening infrastructure, and for the NFTA to offer pre- and post-construction property inspections to assess potential damage.

Commenters share positive experiences with the existing Metro Rail system, stating that noise levels near current stations like Church Street are minimal and not disruptive. These commenters suggest that concerns about noise and vibration may be overstated and that the DEIS includes reasonable construction and operational noise abatement procedures.

Submission Numbers: (1768) (1800) (1813) (1831) (1857) (1900) (1922) (1929) (1968) (2331) (2332) (2336) (2352) (2353) (2358) (2430) (2439) (2462)

C.4.15.1.2 RESPONSES

As described in the response to comment group 24, the Project's impact on vibration related issues was studied according to the general assessment procedures outlined in the Federal Transit Administration's *Transit Noise and Vibration Impact Assessment* (FTA Report No. 0123, September 2018). Following the FTA guidance, the vibration analysis assumes the most conservative propagation of vibration from source to receptor and assumes no reduction for vibration propagation based on soil type.

Soil types and their limitations for construction will be evaluated in detail during later preliminary and final design of the Project. Detailed geotechnical investigations will be conducted to assess soil characteristics along the Project alignment, so that construction techniques and environmental safeguards can be developed to address any limitations. Soil stabilization techniques would be used in work areas, both during and after construction, to prevent potential sedimentation of nearby waterways and to minimize other potential soil disturbance effects.

As described in Section 4.11, "Noise" and Appendix D7 "Noise and Vibration Technical Memorandum", Metro conducted a noise analysis following procedures described in the Federal Transit Administration (FTA) *Transit Noise and Vibration Impact Assessment* (FTA Guidance Manual) (FTA Report No. 0123, September 2018) for rail and bus-related noise and vibration impacts. Based on this analysis, the Project would not result in a moderate or a severe impact along Niagara Falls Boulevard. Incremental changes in noise levels between the LRT Build

Alternative and existing conditions would be up to 4 dBA, which would be imperceptible to less than readily noticeable.

Residences within 172 feet of the surface tracks and embedded track at grade crossings along John James Audubon Parkway between Dodge Road and the Amherst Police station would experience noise exposure in the moderate impact category and noise level increments (i.e., the difference from existing noise levels) between 4 and 8 dBA. Such noise levels would be perceived as readily noticeable as compared to existing levels at these receptors.

To reduce the adverse noise impacts resulting from the LRT Build Alternative, Metro will implement, as practical, various mitigation strategies. These mitigation strategies (presented in Section 4.11, “Noise”) were incorporated into the conceptual design and operational assumptions and the noise analysis. During final design of the LRT Build Alternative, horizontal alignment shifts will be considered and included in the Project, as practical, to further reduce noise impacts. As documented, proposed mitigation strategies and measures to be included in the construction and operation of the LRT Build Alternative are listed below:

- The LRT Build Alternative would include the deployment of a new fleet of rail vehicles to operate along the newly introduced rail line extension as well as the existing light-rail line. This investment in a new fleet of rail vehicles will reduce noise resulting from the operations of the LRT Build Alternative and its steel train wheels making contact with the steel track configuration. Metro is committed, as feasible, to ensure rail vehicles steel wheels are properly maintained, to reduce noise (“wheel squeal”).
- Metro commits, as feasible, to invest in vehicle rail skirts that break the line of sight between the wheel-rail contact point and adjacent noise receptors (e.g., residences), resulting in a reduction of 5 dBA.
- LRT Build Alternative would include an investment, as practical, in rail greasers on the track to reduce the friction between the rail vehicle wheels and the track.
- Metro commits, as feasible, to invest in signals to be used at the entrance or exit of tunnel portals that produce a level not greater than 83 dBA at a distance of 50 feet.
- To reduce noise in the residential areas along the LRT Build Alternative north of the proposed Ellicott Complex Station, Metro is committed, as feasible, to limit service speeds to 28 miles per hour on average, and warning bells would not be used at at-grade crossings; however, warning systems (e.g., gates and flashing signals) would be located at each at-grade crossing to improve the safety of the crossing.

C.4.16 Chapter 4, Section 4.13 Air Quality

C.4.16.1 Comment Group 28: Air Quality

C.4.16.1.1 SYNOPSIS OF COMMENTS

Commenters express both support and concern regarding the environmental impacts of the Project. Supporters emphasize that the Project could significantly reduce greenhouse gas emissions by encouraging a shift from private vehicle use to public transit, aligning with broader goals for sustainability and improved air quality in the Buffalo region. They view the expansion as a necessary step toward reducing the region's carbon footprint and promoting healthier, more environmentally responsible transportation options.

Commenters raise concerns about the environmental consequences of construction, particularly the release of airborne pollutants during road excavation and infrastructure work near residential areas. They express apprehension about being exposed to dust and emissions during prolonged construction periods and question whether adequate mitigation measures would be in place to protect public health.

Submission Numbers: (1795) (1813) (1864)

C.4.16.1.2 RESPONSES

Section 4.13, "Air Quality" includes a detailed analysis of the potential air quality effects of the Project using USEPA, NYSDOT, and FHWA methodologies. The regional analysis concluded that the Project would result in a decrease of vehicle miles traveled (VMT) and pollutant emissions in the Project corridor.

Emissions from on-site construction equipment, on-road construction-related vehicles, diverted traffic during construction, and dust-generating construction activities during the construction of the Project have the potential to affect air quality. Recognizing the potential air quality impacts of construction activities, Metro has identified construction mitigation commitments, which include not only its standard specifications but also measures identified specifically for this Project based on its proximity to sensitive land uses. These measures are presented in Section 4.17, "Construction Effects."

C.4.17 Chapter 4, Section 4.14 Energy

No comments

C.4.18 Chapter 4, Section 4.15 Hazardous Materials

No comments

C.4.19 Chapter 4, Section 4.16 Utilities

No comments

C.4.20 Chapter 4, Section 4.17 Construction Effects

C.4.20.1 Comment Group 29: Construction Effects

C.4.20.1.1 SYNOPSIS OF COMMENTS

Commenters express a wide range of views regarding the anticipated construction impacts of the Project. Commenters voice opposition, citing concerns about prolonged disruption to daily life, increased traffic congestion, and potential safety risks for pedestrians, particularly in residential areas near Niagara Falls Boulevard and Kenmore Avenue. Specific concerns include the rerouting of traffic onto side streets, increased noise and air pollution, and the potential for damage to homes and businesses. Some residents also question whether the Project would cover costs related to foundation damage or provide adequate mitigation for those directly affected.

Commenters acknowledge the inconvenience but support the Project, viewing the construction period as a temporary disruption that would ultimately yield long-term benefits for the region. These commenters emphasize the potential for improved mobility, economic development, and enhanced quality of life, particularly for those who rely on public transit. Some residents living near the proposed alignment express excitement about the Project despite the expected challenges, citing the importance of investing in regional infrastructure.

Commenters request more detailed information about the construction timeline, traffic management plans, and accessibility accommodations, particularly for individuals with disabilities who rely on the existing system. They also suggest mitigation measures to ensure neighborhood safety during construction.

Submission Numbers: (1810) (2002) (2086) (2134) (2147) (2237) (2241) (2352) (2354) (2374) (2413) (2444) (2465)

C.4.20.1.2 RESPONSES

Chapter 3, “Transportation” of the DEIS documents the Project’s traffic impact, with Table 3-12 covering potential traffic diversions from proposed changes to Niagara Falls Boulevard. Metro is committed to updating traffic data, traffic patterns, and analyses as Project design progresses to ensure an accurate evaluation of the Project’s impact on study area traffic. As part of this updated traffic analysis, Metro is also committed to conducting detailed traffic diversion analysis as it relates to roadway configuration changes along Niagara Falls Boulevard during construction and during operations.

Detailed documentation of the Project’s effect as a result of construction are provided in Section 4.17, “Construction Effects” and Appendix D10 “Construction Effects Supplemental

Information” of the DEIS (Appendix A of the FEIS). A sample of the temporary construction effects considered includes:

- Temporary traffic, transit, parking, pedestrian and bicycle interruptions
- Temporary interruptions associated with activities related to construction staging, materials stockpiling, and hauling of dirt and materials
- Temporary interruptions associated with construction related to access restrictions, increased traffic congestion, lane closures, and detours
- Temporary construction effects associated with ground disturbances, noise, air quality, utilities, and potential exposure to hazardous materials as a result of the construction of Project tunnels, alignment, stations, and other ancillary or supporting Project infrastructure

Within this documentation, Metro commits to a variety of proposed mitigation strategies to address the identified temporary construction effects. A sample of these proposed mitigation measures includes:

- Compliance with all applicable Federal, state, and local requirements
- Inclusion of contractor directives in the final Project construction plans to reduce anticipated construction effects and ensure adherence to industry safety practices
- As part of the final contractor agreement, construction incentives and disincentives to minimize construction durations as feasible and practical
- Development and execution of a Construction Traffic Management Plan
- Direct Contractor to execute Sequential Excavation Method protocols for tunnel excavation as defined by the final construction plans, including a monitoring program
- Development and execution of the State Pollutant Discharge Elimination Permit
- Dust suppression in all work zones, especially when excavating contaminated soil

The EIS is based on preliminary design concepts and Metro acknowledges that Project design is still evolving. As such, future design refinements will be informed by the findings of the EIS and ongoing stakeholder engagement. Metro is committed to on-going communications with the community as it relates to the development of detailed construction plans.

C.4.20.2 Comment Group 30: Construction Duration

C.4.20.2.1 SYNOPSIS OF COMMENTS

Commenters express concern that prolonged construction along Niagara Falls Boulevard could negatively impact small businesses, increase traffic congestion, and disrupt daily life, with some fearing the area may experience economic decline similar to past effects on Main Street.

Additionally, commenters question how the NFTA plans to mitigate impacts on residents and business owners.

A commenter requests clarity on the construction timeline between University Station and the point where the train emerges above ground on Niagara Falls Boulevard.

Submission Numbers: (1793) (2352)

C.4.20.2.2 RESPONSES

Detailed documentation of the Project's effect as a result of construction are provided in Section 4.17, "Construction Effects" and Appendix D10 "Construction Effects Supplemental Information" of the DEIS (Appendix A of the FEIS). A sample of the temporary construction effects considered, as it relates to duration of construction, residential effects, and business effects, is as follows:

- Temporary traffic, transit, parking, pedestrian and bicycle interruptions
- Temporary interruptions associated with construction related to access restrictions, increased traffic congestion, lane closures, and detours
- Temporary construction effects associated with construction staging, construction access, and temporary parking loss, access restrictions, loss of landscaping, loss of business signage, traffic congestion, noise, dust, and aesthetic disruptions

Within this documentation, Metro commits to a variety of proposed mitigation strategies to address the identified temporary construction effects and are relevant to construction duration. A sample of these proposed mitigation measures includes:

- Compliance with all applicable Federal, state, and local requirements
- Inclusion of contractor directives in the final Project construction plans to reduce anticipated construction effects and ensure adherence to industry safety practices
- As part of the final contractor agreement, construction incentives and disincentives to minimize construction durations as feasible and practical
- Development and execution of a Construction Traffic Management Plan
- Contractor requirements to maintain safe storage of construction materials and utilize construction barriers and tarps that are uniform and well maintained
- Contractor requirements to ensure temporary construction lighting avoid glare that affects traffic on the roadway or that causes annoyance or discomfort for residences adjoining the alignment, when reasonable

- Contractor requirements to coordinate with emergency service providers as well as schools and hospitals near the construction zone to minimize the impact of construction activities on their operations
- Contractor requirements to ensure there are no short-term temporary lane and/or shoulder closures during major holidays and major events.
- Contractor requirements to maintain safe and adequate public access to businesses for vehicles, pedestrians, and bicyclists. If access cannot be maintained, the Contractor would be required to notify the affected business in a timely manner and will be directed to conduct work in off peak business hours when reasonable
- Contractor requirements to install temporary business signs to identify business entrances and to direct customers to affected businesses
- Development of a strategic marketing plan to help reduce impacts to businesses during construction.

The public will have access to a Construction Education and Outreach Plan to address any construction-related impacts and provide general construction scheduling information, coordinate construction work with adjacent business activities, and assist with the resolution of issues that could develop between residents, motorists, the contractor, and Metro. A Traffic Management Plan will also be prepared in coordination with local jurisdictions, to include strategies for maintaining emergency access, minimizing disruptions to businesses and neighborhoods, and providing clear signage and traveler information during construction. Both documents will be available on the Project website (www.nftametrotransitexpansion.com). The final Project design and construction plans will establish the schedule, duration, and sequence of construction activities, subject to input from Metro's chosen contractor. Furthermore, commencement of construction is contingent upon securing required approvals and funding, which are yet to be confirmed.

C.4.21 Chapter 4, Section 4.18 Indirect and Cumulative Effects

No comments

C.4.22 Chapter 4, Section 4.19 Commitment of Resources

No comments

C.4.23 Chapter 5 Section 4(f)

No comments other than those provided by agencies.

C.4.24 Chapter 6 Comparison of Alternatives

C.4.24.1 Comment Group 31: Alternatives Comparison

C.4.24.1.1 SYNOPSIS OF COMMENTS

Commenters express concern that the service proposed by Build Alternatives is outdated, lacking consideration of more recent transportation solutions. Commenters also express that the comparison between Build Alternatives is misleading, as the modes serve different functions and urban contexts, and that BRT's advantages, such as lower cost, fewer displacements, and more frequent service, are underrepresented. Additionally, they urge NFTA to justify the higher cost of LRT Build Alternative and consider whether broader regional transit improvements could be achieved with a more cost-effective approach by evaluating the cost to benefit ratio of the Project as a compared data point, such as per-passenger-mile estimates.

Commenters requested that the Final EIS and Record of Decision (ROD) more transparently address adverse impacts identified in Chapter 4 of the DEIS, Section 4.4, "Neighborhoods and Communities" and reconcile them with conclusions presented in Chapter 6, "Comparison of Alternatives".

Commenters also recommended clarity regarding information provided in Table ES-12 as compared to Table 4.14-2 through Table 4.14-4, specifically citing differences in energy use and vehicle miles traveled.

Commenters requested clarification of the information presented within the DEIS Executive Summary as compared to Chapter 2 "Alternatives Considered" and Chapter 6 "Comparison of Alternatives," citing intersections impacted (Table ES-3), businesses and homes requiring acquisition and displacement (Table ES-4), impact to the Land Use and Neighborhoods (Table ES-5), geological impact (Table ES-7), water resources (Table ES-9), noise and vibration impacts (Tables ES-10 and ES-11), and service frequency. The commenter requests that these points be clearly discussed in tables within Executive Summary and Chapter 6 "Comparison of Alternatives." Commenters requested that these be highlighted in the FEIS and Record of Decision (ROD).

Submission Numbers: (1846) (2059) (2188) (2410)

C.4.24.1.2 RESPONSES

Chapter 2, "Alternatives Considered," details the process undertaken to assess potential Project alternatives, ultimately resulting in Metro's selection of the Locally Preferred Alternative. Metro's evaluation encompassed transit technologies and modes with demonstrated reliability, established performance, and the ability to meet Buy America requirements which is a prerequisite for securing federal funding.

Documented within Chapter 6, “Alternatives Comparison” of the DEIS, is a comparison of proposed Build Alternatives against the Project’s goals and objectives defined during Project Scoping. This comparison uses the results of the DEIS findings to conduct this comparison. As documented in Comment Group #8, the Project’s Opinion of Probable Cost is included within Chapter 3, “Supplemental Analyses” of the FEIS.

The methodology used to compare Build Alternatives is qualitative and is described as follows: (1) the alternative that best meets or demonstrates the highest comparative quantitative performance against the Project’s goals and objectives; (2) the alternative that meets the Project’s goals and objectives but exhibits comparatively lower quantitative performance; and (3) the alternative that satisfies some, but not all, of the Project’s goals and objectives. This framework is documented in Chapter 1, “Introduction” of the FEIS.

As documented in the response to Comment Group #11, detailed transit ridership data collection and analysis methodologies are presented in Appendix C2 “Travel Demand Forecasting” of the DEIS. Ridership forecasts are based on historical and current data provided by Metro and UB. For the EIS, Metro utilized the FTA Simplified Trips-on-Project Software (STOPS) model. The STOPS model is a transit ridership forecasting tool designed to support projects seeking Federal funding through the Capital Investment Grant program. The STOPS model calibration for the Project was updated using post-pandemic ridership counts, socio-economic projections, and zone-to-zone highway travel times to reflect more recent transit demand patterns. As the Project advances toward implementation, these ridership forecasts will be revisited to ensure accuracy, particularly in support of the FTA Capital Investment Grant application.

Using the FTA STOPS model, it is forecasted that the operations of the LRT Build Alternative would result in a reduction of 11,646,180 annual vehicle miles traveled within the study area. In comparison, the BRT Build Alternative is projected to reduce approximately 763,880 annual vehicle miles traveled within the study area. The difference between the two Build Alternatives directly correlates to the LRT Build Alternative’s forecasted ability to attract more new riders as compared to the BRT Build Alternative. In accordance with the FTA Capital Investment Grant program, all project applicants are required to evaluate the Project’s cost-benefit ratio and demonstrate cost-effectiveness. As the Project moves toward implementation, completing the CIG program will be one of the next steps. For more information on the FTA Capital Investment Grant program, please visit <https://www.transit.dot.gov>.

A review of the information provided within Executive Summary as compared to Section 4.14, “Energy” has been completed. Chapter 2, “Errata Table of Draft EIS Revisions” documents the revision made to the DEIS Executive Summary Table ES-12 (Appendix A of the FEIS).

Project Adverse Impacts to the Environment: Air Quality, Energy, Hazardous Materials, and Utilities

Environmental Resource	LRT Build Alternative	BRT Build Alternative	Mitigation
Energy (Section 4.15)	<ul style="list-style-type: none"> • No adverse impacts • <u>-70,445 Roadway Network Energy Consumption (mmBtu/year)</u> • <u>9,981 Transit Operations Energy Consumption (mmBtu/year)</u> • <u>-60,464 Net Energy Consumption (mmBtu/year)</u> 	<ul style="list-style-type: none"> • No adverse impacts • <u>-4,745 Roadway Network Energy Consumption (mmBtu/year)</u> • <u>+14,429 Transit Operations Energy Consumption (mmBtu/year)</u> • <u>+ 9,684 Net Energy Consumption (mmBtu/year)</u> 	

A comment provided by submission #2059 expressed that, “The comments in Section 6 table 6-7 regarding No Adverse Impact for the Neighborhoods and Communities does not correspond to the information found in Section 4.4. There will be adverse impacts. There will be neighbors impacted. Acknowledge your own data in section 6 please.” A review of the information provided in Section 4.4, “Neighborhoods and Communities” has been completed. In response, please refer to the methodology described in Appendix D4, “Neighborhoods and Communities Supplemental Information” of the DEIS (Appendix A of the FEIS) which defines adverse impact criteria as part of this EIS which is intended as a regulatory document for projects that may seek Federal funding. Refer to Appendix D4, “Neighborhoods and Communities”, D1. Regulatory Context and Methodology which states the following:

Metro used the Federal Highway Administration (FHWA) “Community Impacts Assessment: A Quick Reference for Transportation” as a guide to review potential impacts of the LRT Build Alternative and the BRT Build Alternative on community facilities. The analysis considers the following types of impacts:

- **Community Character and Cohesion** - Impacts due to commercial and residential displacements and changes in land use, visual/aesthetics, noise levels, and population/demographics. Community character is an attribute of a geographic area with identifiable characteristics that make it unique. For the DEIS, the Project Corridor is divided into three geographic areas or communities which are defined as the southern segment (from University Station to Sheridan Drive), middle segment (from Sheridan Drive to Rensch Road), and northern segment (from Rensch Road to north of I-990). Community cohesion is an attribute of a geographic area, where segmentation or division of the area would reduce its desirability to current and future residents. For the DEIS, an impact on community character and cohesion would be adverse if impacts related to displacements and changes in land use, visual/aesthetics, noise levels, and population/demographics substantially alter the character of each community, as discussed throughout the DEIS.

- **Mobility** - Overall community impacts of changes in transportation options, travel patterns, business activity, access to jobs, and access for emergency service providers. For the DEIS, an impact on mobility would be adverse if transportation options, access to jobs, and access for emergency service providers would be permanently reduced or restricted.
- **Community Facilities** - Impacts on key facilities in the study area that play an important role in shaping and defining the community, such as schools or places of worship, that serve as focal points or provide community services. For the DEIS, an impact on community facilities would be adverse if access to facilities would be restricted or reduced.

As such, the EIS documentation indicating no adverse impact is correct.

A comment provided by submission #2410 expressed that, “The EIS also fails to highlight most of the advantages of the BRT Build Alternative as compared to the LRT, including: 1. Fewer intersections impacted (Table ES-3) 2. Fewer businesses and homes requiring acquisition and displacement (Table ES-4) 3. More impact to the Land Use and Neighborhoods (Table ES-5) 4. More geological impact (Table ES-7) 5. More water resources (groundwater) impact (Table ES-9) 6. Significantly more noise and vibration impacts (Tables ES-10 and ES-11) 7. More frequent departures (every 5 to 6 minutes versus every 10 minutes for LRT). This would seem to offset the 2.8 minute difference in trip duration (25.9 BRT, 23 LRT). These advantages should have been more clearly discussed, for example in Table ES-2, and, more importantly, in Table 2.12 of Section 2.6, “Comparison of Alternatives.” I would request that these be highlighted in the final draft of the EIS and Record of Decision (ROD).”

In response to comment submission #2410, the Executive Summary tables present a summary of EIS findings and associated environmental impacts for each Build Alternative. Chapter 6 qualitatively compares each Build Alternative against Project goals and objectives. Only Table 6-7 in Chapter 6 compares the environmental impacts of each alternative, focusing on adverse Project impacts as established by the Project goal.

C.4.24.2 Comment Group 32: Other Preferred Transit Service

C.4.24.2.1 SYNOPSIS OF COMMENTS

Commenters emphasize that expanding bus service would be a more cost-effective, flexible, and environmentally responsible solution. Comments suggest investing in electric or fuel cell buses, improving existing routes and shelters, and enhancing the UB Stampede system, which they believe already meets student transportation needs. Concerns are raised about the disruption to homes and businesses, the high cost of construction and maintenance, and the limited number of users who would benefit from the LRT Build Alternative. Some propose alternative alignments or regional busway systems modeled after other cities, such as Pittsburgh, to better serve the broader population. Others question the long-term viability of the Project, suggesting that future technologies or improved road infrastructure would be a better use of public funds.

Submission Numbers: (1748) (1761) (1785) (1805) (1834) (1846) (1879) (1889) (1897) (1938) (1962) (1984) (2001) (2114) (2183) (2240) (2283) (2331) (2352) (2353) (2414) (2438)

C.4.24.2.2 RESPONSES

Response to commenters expressing the need for alternative alignments and service types is documented in Comment Groups # 5 through #7. Response to commenters expressing Project costs and funding concerns is documented in Comment Group # 8.

C.4.24.3 Comment Group 33: Prefer No Build Alternative

C.4.24.3.1 SYNOPSIS OF COMMENTS

Commenters express support for maintaining the existing UB Stampede bus system, citing its direct route, adequate capacity, and flexibility to meet student transportation needs between campuses. Concerns are raised about the proposed rail or bus expansion routes deviating from Millersport Highway, which is viewed as the most efficient corridor. Several commenters note that current transit options already provide sufficient access to shopping and campus facilities and questioned the necessity of additional infrastructure. The fixed nature of the LRT Build Alternative is criticized for lacking adaptability to changing demand and destinations. Some commenters advocate for the No Build Alternative, referencing past infrastructure projects as examples of costly and ineffective government spending.

Submission Methods: (1852) (1879) (2012) (2036) (2047) (2115) (2127) (2148) (2155) (2352) (2354) (2393) (2414) (2449)

C.4.24.3.2 RESPONSES

As documented in Chapter 1 of the DEIS, the purpose and need for the Project was established during the initial public scoping process. The purpose and need for the Project is to serve existing Metro riders; attract new transit patrons; improve regional connections between Buffalo, Amherst, and Tonawanda; and support transit-oriented development and affordable housing opportunities. The No Build Alternative does not satisfy the Project's purpose and need.

C.4.24.4 Comment Group 34: Prefer BRT Build Alternative

C.4.24.4.1 SYNOPSIS OF COMMENTS

Commenters prefer the BRT Build Alternative, citing its lower cost, greater flexibility, and reduced impact on residential properties and businesses. Concerns are raised about the high expense of LRT Build Alternative relative to its perceived benefits. Several commenters note that BRT would avoid property demolitions, minimize construction disruptions, and maintain emergency access along the corridor. Commenters emphasize that BRT would better serve students and commuters through adaptable routing and existing infrastructure. The use of electric buses is also highlighted as an environmentally responsible and economically practical solution.

Submission Methods: (1999) (2107) (2114) (2153) (2352) (2354) (2371) (2375) (2413) (2448) (2469)

C.4.24.4.2 RESPONSES

Metro acknowledges the opinions expressed by commenters.

As documented in Appendix B1, “Alternatives Considered Supplemental Information” of the DEIS Metro, and GBNRTC initiated an Alternatives Analysis process in 2012 to evaluate high-quality public transit service alternatives between Downtown Buffalo, Buffalo’s Main Street Metro Rail Corridor, and the Town of Amherst. The goal of the Alternatives Analysis effort was to improve public transit access between key activity centers in Buffalo and Amherst, to provide enough information to support the recommendation of a Locally Preferred Alternative (LPA), and to provide the information necessary for GBNRTC to adopt the LPA as part of the region’s fiscally constrained long-range transportation plan. The Alternatives Analysis involved a three-tiered approach that established screening methodology and selection criteria to evaluate mode and alignment alternatives throughout the Project Corridor. A Steering Committee, a Technical Advisory Committee, and a public participation plan were established to help guide the study and solicit input and feedback from community stakeholders. During the study, four public information meetings, over 75 staff-level meetings, and numerous presentations were conducted with community organizations and stakeholders. The study evaluated 36 alternatives including rail and bus transit modes. After reviewing the technical results of the Alternatives Analysis and considering feedback from the Project Steering and Technical Advisory Committees and the public, Metro recommended the Project’s LRT Build Alternative to advance as the LPA.

C.4.24.5 Comment Group 35: Prefer LRT Build Alternative

C.4.24.5.1 SYNOPSIS OF COMMENTS

Commenters express support for the LRT Build Alternative over the BRT Build and No Build Alternatives. Comments emphasize that LRT Build Alternative offers greater reliability, permanence, environmental benefits, and long-term cost-effectiveness. They note that the LRT Build Alternative would provide a seamless, one-seat ride between UB campuses and downtown Buffalo, eliminating the need for transfers that currently discourage ridership. Commenters also highlight the LRT Build Alternative’s potential to reduce vehicle miles traveled, support transit-oriented development, and improve access to jobs, education, and healthcare, particularly for transit-dependent populations including students, international residents, and individuals with disabilities.

Commenters share personal experiences with the limitations of current bus services, including overcrowding, infrequent schedules, and weather-related delays. They argue that buses are less appealing due to their susceptibility to traffic congestion.

The LRT Build Alternative is seen as a transformative infrastructure investment that could modernize Buffalo's transit system, increase regional connectivity, and support economic development in Amherst and Tonawanda. Some also note that the LRT would better align with New York State's climate goals and regional sustainability plans.

Organizations, including Nickel City Housing Cooperative, GoBike, and Citizens for Regional Transit, also endorse the LRT Build Alternative, citing its superior performance in meeting the Project's stated goals as outlined in the DEIS. These include improved mobility, increased ridership, reduced emissions, and enhanced service for underserved communities. While some acknowledge the higher upfront cost of LRT Build Alternative compared to BRT Build Alternative, they argue that the long-term benefits, including lower operational costs and greater system integration, justify the investment.

Submission Numbers: (1717) (1722) (1726) (1726) (1734) (1742) (1746) (1766) (1768) (1774) (1782) (1786) (1789) (1798) (1812) (1856) (1859) (1880) (1899) (1927) (1960) (1972) (1974) (1979) (2045) (2054) (2061) (2085) (2144) (2146) (2152) (2156) (2158) (2166) (2170) (2172) (2177) (2180) (2194) (2200) (2207) (2234) (2236) (2237) (2242) (2248) (2280) (2333) (2334) (2336) (2342) (2345) (2346) (2347) (2348) (2365) (2368) (2369) (2374) (2400) (2417) (2436) (2445) (2447) (2453)

C.4.24.5.2 RESPONSES

Metro acknowledges the opinions expressed by commenters.

C.4.25 Agency Comments

C.4.25.1 Comment Group 36: Agency Comments

Agency comments are discussed in Section C.5.

C.4.26 Project Support

C.4.26.1 Comment Group 37: Project Support

C.4.26.1.1 SYNOPSIS OF COMMENTS

Commenters expressed support for the Project citing a variety of factors for their support. Commenters emphasized the Project's perceived long-term benefits for regional mobility, environmental sustainability, and equitable access to education, employment, and services.

Commenters highlighted the importance of implementing interim solutions to improve transit access in the short term, such as increasing bus frequency and service hours. Others stressed the need for the expansion to be completed on time and without delays, noting that the Project has been discussed for decades and is seen as long overdue. The LRT Build Alternative was also

viewed as a catalyst for economic development, transit-oriented growth, and regional integration, with comments expressing hope that it would lead to future expansions.

Submission Numbers: (1711) (1712) (1713) (1714) (1715) (1716) (1717) (1718) (1719) (1720) (1721) (1723) (1724) (1725) (1727) (1729) (1730) (1731) (1732) (1735) (1736) (1737) (1738) (1739) (1740) (1741) (1742) (1743) (1744) (1745) (1746) (1747) (1751) (1753) (1754) (1755) (1756) (1758) (1759) (1760) (1765) (1766) (1767) (1768) (1769) (1770) (1771) (1775) (1777) (1778) (1779) (1782) (1783) (1784) (1786) (1787) (1789) (1792) (1794) (1795) (1796) (1797) (1799) (1801) (1803) (1804) (1808) (1809) (1810) (1811) (1812) (1818) (1819) (1820) (1821) (1824) (1825) (1826) (1827) (1828) (1832) (1833) (1836) (1837) (1840) (1841) (1842) (1843) (1845) (1847) (1849) (1850) (1851) (1853) (1854) (1855) (1856) (1860) (1861) (1862) (1864) (1868) (1870) (1871) (1872) (1874) (1875) (1876) (1877) (1878) (1880) (1881) (1882) (1887) (1890) (1891) (1892) (1893) (1894) (1895) (1896) (1898) (1908) (1909) (1911) (1914) (1915) (1916) (1917) (1918) (1919) (1923) (1924) (1926) (1928) (1931) (1932) (1933) (1934) (1936) (1937) (1940) (1942) (1947) (1949) (1950) (1953) (1956) (1957) (1958) (1960) (1961) (1964) (1965) (1967) (1969) (1970) (1971) (1973) (1974) (1975) (1976) (1977) (1978) (1979) (1980) (1981) (1982) (1983) (1985) (1986) (1987) (1988) (1989) (1990) (1991) (1992) (1993) (1994) (1995) (1996) (1997) (1998) (2000) (2003) (2004) (2005) (2006) (2007) (2008) (2009) (2013) (2016) (2017) (2018) (2021) (2022) (2023) (2024) (2025) (2027) (2028) (2029) (2031) (2032) (2033) (2035) (2042) (2043) (2045) (2046) (2048) (2052) (2053) (2054) (2056) (2057) (2058) (2060) (2061) (2063) (2064) (2065) (2068) (2071) (2072) (2073) (2074) (2078) (2079) (2084) (2085) (2086) (2087) (2088) (2089) (2090) (2092) (2094) (2095) (2096) (2097) (2098) (2100) (2102) (2103) (2104) (2108) (2111) (2116) (2117) (2118) (2128) (2130) (2131) (2132) (2136) (2137) (2138) (2139) (2140) (2141) (2142) (2143) (2145) (2146) (2147) (2149) (2150) (2151) (2152) (2154) (2156) (2157) (2158) (2160) (2161) (2162) (2163) (2167) (2168) (2169) (2170) (2171) (2172) (2173) (2176) (2178) (2179) (2181) (2184) (2186) (2187) (2189) (2190) (2192) (2193) (2195) (2196) (2197) (2198) (2200) (2201) (2202) (2203) (2204) (2205) (2206) (2208) (2209) (2210) (2211) (2212) (2214) (2218) (2219) (2220) (2221) (2222) (2223) (2224) (2225) (2226) (2227) (2228) (2229) (2230) (2231) (2232) (2233) (2235) (2236) (2237) (2238) (2242) (2245) (2246) (2247) (2249) (2250) (2251) (2252) (2253) (2254) (2255) (2256) (2257) (2258) (2259) (2260) (2261) (2262) (2263) (2264) (2265) (2266) (2267) (2268) (2269) (2270) (2271) (2277) (2284) (2286) (2290) (2291) (2292) (2293) (2294) (2295) (2296) (2297) (2298) (2299) (2300) (2301) (2302) (2303) (2304) (2305) (2306) (2307) (2308) (2309) (2310) (2311) (2312) (2313) (2314) (2315) (2316) (2317) (2318) (2319) (2320) (2321) (2322) (2323) (2324) (2325) (2326) (2327) (2328) (2333) (2334) (2336) (2339) (2340) (2341) (2343) (2344) (2349) (2351) (2359) (2361) (2362) (2363) (2364) (2366) (2367) (2369) (2370) (2372) (2373) (2374) (2378) (2379) (2380) (2381) (2382) (2383) (2384) (2385) (2386) (2387) (2388) (2389) (2390) (2391) (2392) (2394) (2397) (2399) (2400) (2401) (2403) (2404) (2405) (2406) (2407) (2409) (2412) (2415) (2416) (2417) (2418) (2419) (2431) (2432) (2433) (2436) (2437) (2440) (2441) (2442) (2443) (2444) (2445) (2446) (2447) (2450) (2451) (2452) (2453) (2458) (2461) (2464) (2467) (2470) (2472) (2476) (2477) (2480)

C.4.26.1.2 RESPONSES

Metro acknowledges the opinions expressed by commenters.

C.4.27 Project Opposition

C.4.27.1 Comment Group 38: Project Opposition

C.4.27.1.1 SYNOPSIS OF COMMENTS

Commenters expressed opposition to the Project, particularly the Light Rail Transit (LRT) Build Alternative, citing concerns about cost, community disruption, and limited benefit to local residents. Comments argued that the Project primarily serves University at Buffalo (UB) students and questioned the justification for a multi-billion-dollar investment that they believe will not significantly improve regional mobility or reduce car dependency in suburban areas like Amherst and Tonawanda.

Commenters expressed concerns about the potential for increased crime, noise, and property devaluation, particularly in residential neighborhoods along Niagara Falls Boulevard and Maple Road. Commenters referenced past experiences with the original Metro Rail construction on Main Street, which they believe led to long-term economic decline and business closures. Comments expressed skepticism about the projected ridership figures and the long-term viability of the system, especially given regional population trends and the availability of flexible, lower-cost alternatives like expanded bus service or electric buses. Some also questioned the environmental and structural impacts of construction, particularly in areas with unstable clay soils and aging infrastructure.

Submission Numbers: (1733) (1748) (1749) (1762) (1772) (1776) (1785) (1793) (1805) (1806) (1807) (1813) (1834) (1839) (1848) (1857) (1879) (1885) (1889) (1889) (1897) (1900) (1901) (1903) (1906) (1910) (1912) (1921) (1929) (1930) (1935) (1938) (1941) (1943) (1945) (1946) (1948) (1959) (1962) (1963) (1968) (1984) (1999) (2001) (2012) (2014) (2019) (2020) (2026) (2034) (2036) (2037) (2039) (2041) (2044) (2051) (2055) (2062) (2067) (2069) (2076) (2106) (2114) (2115) (2127) (2148) (2153) (2155) (2174) (2182) (2191) (2213) (2217) (2239) (2240) (2240) (2273) (2274) (2275) (2278) (2279) (2281) (2285) (2289) (2331) (2332) (2338) (2350) (2352) (2353) (2354) (2355) (2356) (2357) (2358) (2360) (2371) (2376) (2393) (2393) (2408) (2410) (2411) (2413) (2414) (2421) (2424) (2426) (2427) (2428) (2428) (2430) (2434) (2435) (2438) (2449) (2454) (2455) (2456) (2459) (2462) (2465) (2471) (2473) (2474) (2475) (2478) (2479)

In addition to the comments received during the DEIS comment period using identified public comment procedures, NFTA received a petition in opposition of the Project signed by approximately 120 names. The petition is included in Appendix C1 “Comments on the Draft Environmental Impact Statement”.

C.4.27.1.2 RESPONSES

Metro acknowledges the opinions expressed by commenters.

C.4.28 Other Comments

C.4.28.1 Comment Group 39: Comments not Directly Related to the Project

C.4.28.1.1 SYNOPSIS OF COMMENTS

Commenters called for more transparency regarding a Siena College poll cited, questioning its methodology, sample size, and representation of local residents, and requested that future surveys be made publicly available and inclusive of all demographics.

Commenters expressed concerns related to NFTA's operational track record, including maintenance issues, safety at stations, and past failures to deliver on infrastructure projects. Some commenters cited personal experiences with unsafe or inaccessible transit conditions. Others emphasized the need for equitable investment in underserved areas and expressed support for long-term rail expansion but urged the NFTA to first address existing service gaps and operational shortcomings.

C.4.28.1.2 RESPONSES

Metro thanks and appreciates the opinions expressed by commenters. The assessment of the Project's effects is based on preliminary Project design concepts. Design of the Project is still underway, and advancement of Project design will be informed by the findings of this EIS, public and stakeholder input, and will continue to evolve as the Project moves toward implementation. Those comments provided but not directly related to the Build Alternatives proposed as part of the Project and evaluated within the EIS have been submitted to Metro for inclusion in the agency's public record.

The referenced Sienna College poll is not part of the formal EIS public comment record or formal public comment period; therefore, it is not included within the EIS.

Submission Numbers: (1785) (1792) (1800) (1834) (1900) (1926) (1954) (1999) (2034) (2101) (2105) (2112) (2195) (2216) (2242) (2243) (2287) (2329) (2338) (2358) (2362) (2371) (2377) (2414) (2416) (2420) (2437) (2447) (2453) (2468)

C.4.28.2 Comment Group 40: Other Comments Including Public Outreach

C.4.28.2.1 SYNOPSIS OF COMMENTS

Commenters expressed concerns about the transparency, accessibility, and public engagement process surrounding the Project. Several individuals stated they were unaware of public forums or polling efforts and felt that the Project was being advanced without meaningful community input. Some suggested that a public referendum or ballot measure would have been a more democratic approach to gauge support.

Commenters also called for improved communication and accountability from the NFTA, with concerns that delays in the environmental review process and lack of updates could undermine public trust and fuel opposition. Commenters emphasized the importance of hiring a competent construction team to avoid extended timelines and cost overruns, which could further erode public confidence. Some attendees of the August 19 public hearing felt the event was orchestrated to favor supporters of the Project, citing the order of speakers and limited media coverage of dissenting voices. The absence of local elected officials at the meeting was also noted as a sign of disengagement from constituents.

One commenter requested that a representative from NFTA attend a Clean Air community meeting to discuss the Project.

Submission Numbers: (1711) (1824) (1872) (1898) (1938) (2001) (2015) (2019) (2076) (2131) (2164) (2276) (2333) (2360) (2375) (2376) (2444)

C.4.28.2.2 RESPONSES

Metro thanks and appreciates the opinions expressed by commenters and will consider the input provided as it relates to facilitating future public outreach events and efforts. All public outreach efforts and events have been noticed as required by law. Additional notifications have been provided via the Project website (www.nftametrotransitexpansion.com) and email notices sent to those who signed-up to be on the Project mailing list, as documented. For more information on Project related outreach efforts and notice of those events, please refer to Appendix J1, “Public Outreach and Coordination Report” and Appendix J2, “Listening Sessions and Survey” of the DEIS.

Metro facilitated the August 19, 2025, Public Hearing by adhering to agency, Federal, and state guidelines. Oral testimony provided at the hearing and the order of community members providing oral testimony was based on a “first come, first served” basis utilizing a sign-up sheet provided at the Public Hearing.

Metro welcomes the opportunity to discuss the Project with interested community groups, including the Clean Air Coalition, as the Project progresses through future design phases.

C.5 AGENCY COMMENTS

C.5.1 Environmental Protection Agency

C.5.1.1 Comments

The U.S. Environmental Protection Agency (EPA) has reviewed the Draft Environmental Impact Statement received from the Federal Transportation Agency regarding the Niagara Frontier Transportation Authority Expansion Project across the Buffalo-Amherst-Tonawanda Corridor

(the Project) in New York State. This review was conducted in accordance with EPA's responsibilities pursuant to the National Environmental Policy Act and Section 309 of the Clean Air Act (CAA). On April 14, 2025, the EPA reviewed the Administrative DEIS and provided comments.

The Project, once completed, will connect established and emerging activity centers along Buffalo's Metro Rail line with those in Amherst and Tonawanda by offering fast, reliable, safe, and convenient transit. The DEIS assesses the potential impacts of two alternative designs which includes a Light Rail Transit (LRT) system and a Bus Rapid Transit (BRT) system, as well as the no action alternative. Mitigation is being proposed to address potential adverse impacts from each alternative. The DEIS identifies the LRT as the Locally Preferred Alternative (LPA) which involves constructing a seven-mile rail extension along with an additional 10 stations, two park-and-ride facilities, and a storage and maintenance facility. We are providing the enclosed comments for your consideration, with a focus on air and water resources consistent with our Clean Water Act (CWA) and CAA authorities.

C.5.1.1.1 GENERAL COMMENTS

The DEIS references several plans that will be developed by the Project team including a Construction Education and Outreach Plan, and a Traffic Management Plan. EPA suggests the document provide reference to where these and similarly developed plans can be accessed by the public for effective engagement.

The Draft EIS states that several roadway improvement projects were not included in the traffic model because "these projects were not planned at the time that the traffic model was developed." Please provide a qualitative discussion of how these improvements may impact regional transportation. Additionally, EPA suggests that the Final EIS clarify if these improvements were included in the modeling of the two build alternatives. (p. 3-17)

EPA suggests the Final EIS include a map displaying the changes in volumes due to traffic diversion from the Build Alternatives to accompany Table 3-12. (p. 3-20)

The Draft EIS includes a discussion and analysis providing estimates of changes in transportation due to mode shift and states that this mode shift is being conservatively assumed as a proposed mitigation strategy. While EPA appreciates the discussion of the benefits of the transportation mode shifts due to the Project, we suggest that the Final EIS further discuss which impacts are being mitigated through these changes. (p. 3-39)

EPA suggests that FTA confirm in each summary table that there are no conflicting conclusions on Project impacts. For instance, in Table 3-30 in discussing the LRT Build Alternative in PM Peak (2040), one bullet states that no adverse impacts after mitigation are expected while another bullet states that one adverse impact is expected.

Section 4.9, “General Ecology and Wildlife” provides discussion of impacts on wildlife species; EPA recommends FTA confirm all species discussed in the chapter are included in the species table.

EPA suggests that each resource area include a brief discussion comparing impacts between the two build alternatives. While a summary comparison table is provided separately in Table 6.7 in Chapter 6, “Comparison of Alternatives,” a summary statement within the effects analysis for each resource chapter would be beneficial. Similarly, where summary impact tables are provided within the effects analysis chapters, EPA suggests that the document indicate where impacts and mitigations are identical between the build alternatives to more clearly display where differences occur.

C.5.1.1.2 CONSTRUCTION EFFECTS

EPA recommends that this chapter be revised to provide further discussion on the potential construction impacts to the different resource areas. For instance, a qualitative description of the possible locations of temporary fill placement in wetlands followed by a description of potential mitigations would provide a more thorough effects analysis. Without a discussion of the potential impacts prior to the mitigation, it is difficult to understand the magnitude of the impacts to each resource area. Such information is important for the comparison of alternatives and to assess the effectiveness of mitigation.

EPA recommends including any quantitative air quality analysis conducted for the construction phase of the Project to document the potential impacts requiring the provided mitigation measures.

C.5.1.1.3 AIR QUALITY

Statutory Authorities and Regulations: 42 U.S.C § 7609; 42 U.S.C. § 4321 et seq.; 40 C.F.R. Part 51 and § 52.21; 40 C.F.R. §§ 93.107 and 93.109

EPA suggests the Final EIS provide a direct reference for the EPA national control program mentioned in the DEIS to be projected to reduce annual emissions (p. 4.13-3).

Section 4.13.1.4, “Microscale PM Analysis” discusses why particulate matter modeling was not needed for the Project. To improve clarity, it should be revised to state: “Because the Greater Buffalo Niagara Region is attaining for particulate matter, it is not required to perform a particulate matter hotspot for transportation projects per the transportation conformity regulations outlined in 40 CFR Part 93.”

EPA suggests providing a map highlighting the intersections determined to have a Level of Service (LOS) D or worse for the 2040 forecast year, as well as which intersections met the volume threshold screening criteria requiring a microscale modeling analysis.

C.5.1.1.4 WETLANDS AND WATER RESOURCES

Statutory Authorities and Regulations: 42 U.S.C § 7609; 33 U.S.C. § 1341; 33 U.S.C. § 1342; 33 U.S.C. § 1344; 42 U.S.C. § 4321 et seq.; 40 C.F.R. Part 230

The Final EIS should clearly describe all known permanent effects to wetlands and provide a description of the status of the relevant permitting processes and potential mitigation.

The DEIS mentions that “impacts to riparian habitat and aquatic wildlife will be mitigated through the permitting process.” EPA recommends these impacts and permitting related mitigations be included in the Final EIS for completeness. (p. 4.10-6)

EPA suggests the Final EIS include additional information on and, if possible, a cross-section conceptual design of the Bizer Creek bridge crossing. Additionally, the Final EIS should describe any differences in impacts to the Creek between the two build alternatives.

C.5.1.2 Responses

Metro responses to the U.S. Environmental Protection Agency’s review of the DEIS are provided below.

C.5.1.2.1 GENERAL

As noted in Chapter 2, “Errata Table of Draft EIS Revisions”, Section 4.17, “Construction Effects” of the DEIS (Appendix A of the FEIS) has been revised to provide references to where the public can access the plans that will be developed by the Project team including a Construction Education and Outreach Plan, and a Traffic Management Plan (www.nftametrotransitexpansion.com).

As noted in Chapter 2, “Errata Table of Draft EIS Revisions”, a paragraph about the impacts to the proposed improvements not modeled in the No Build Alternative has been added to Chapter 3, “Transportation” of the DEIS (Appendix A of the FEIS). The conversion of the Frontier Road and John James Audubon Parkway intersection into a roundabout and John James Audubon Parkway into an undivided roadway is expected to improve operations and safety along John James Audubon Parkway due to lower speeds. In addition, the reclaimed right-of-way is expected to improve non-motorized facilities servicing the University at Buffalo.”

Chapter 3, “Transportation”, section 3.5.1.1 on Proposed Mitigation Strategies discusses how the Project is expected to reduce automobile volumes through mode shift benefits. As noted in Chapter 2, “Errata Table of Draft EIS Revisions” of the FEIS, the following statement has been added: 3.5.1.1, “The forecasted reduction in automobile volumes because of the Project’s mode shift benefit will further reduce the Project’s impact on traffic.”

The summary tables in Chapter 3 have been reviewed and conflicting conclusions on Project impacts have been removed.

FTA has confirmed that all species in Section 4.9. “General Ecology and Wildlife” of the DEIS (Appendix A of the FEIS) are included in the species table.

Metro values the EPA’s recommendation to briefly compare the impacts of the two Build Alternatives for each resource area. To meet the EIS’s page limit requirements, this comparison is either provided in the DEIS appendices or not included in the EIS.

C.5.1.2.2 CONSTRUCTION

Section 4.17, “Construction Effects” presents the construction impacts, based on the preliminary design. Proposed mitigation will mitigate these impacts to the extent practical. Final design and construction plans will adhere to these mitigation strategies and define the appropriate construction methods and means.

A quantitative estimates of emissions during construction are not available at the current level of design. As noted in Chapter 2, “Errata Table of DEIS Revisions”, Section 4.17 has been updated to qualitatively describe construction impacts as follows: “Activities related to construction of the Build Alternatives would include increases in particulate matter in the form of fugitive dust (from demolition, ground clearing and preparation, grading, stockpiling of materials, on-site movement of equipment, and transportation of construction materials), as well as exhaust emissions from material delivery trucks, construction equipment, and workers’ private vehicles. Dust emissions typically occur during dry weather, construction activities, or high wind conditions. Temporary impacts to air quality from construction activities would occur during the construction period. Elevated emissions would likely occur immediately adjacent to the construction activities, staging areas, and material hauling routes.”

C.5.1.2.3 AIR QUALITY

A direct reference for the EPA national control program has been added to Section 4.13, “Air Quality” of the DEIS (Appendix A of the FEIS).

As noted in Chapter 2, “Errata Table of Draft EIS Revisions,” Section 4.13, “Air Quality” (Appendix A of the FEIS) has been updated to state: “Because the Greater Buffalo Niagara Region is attaining for particulate matter, it is not required to perform a particulate matter hotspot analysis for transportation projects per the transportation conformity regulations outlined in 40 CFR Part 93.

Maps highlighting the intersections determined to have a Level of Service (LOS) D or worse for the 2040 forecast year, as well as which intersections meet the volume threshold screening criteria requiring a microscale modeling analysis, has been added to Section 4.13, “Air Quality” (Appendix A of the FEIS).

C.5.1.2.4 WETLANDS AND WATER RESOURCES

As described in Section 4.10, “Water Resources”, approximately 1.26 acres of wetlands were delineated within the study area. The Project would affect 0.13 acres of wetlands (LRT), and 0.16 acres of wetlands (BRT). The Project limit of disturbance was used for permanent impacts and a limit of disturbance plus a 10 ft buffer was used for temporary impacts. As design progresses, all practicable measures (i.e., avoidance, implementation of erosion and sediment control measures) would be implemented to minimize effects to freshwater wetlands and state-regulated adjacent areas within the study area. During final design, USACE and NYSDEC would confirm their respective regulatory responsibilities pertaining to wetlands through agency-specific jurisdictional determinations.

Project impacts to riparian habitat and aquatic wildlife and permitting related mitigation have been added to Section 4.10, “Water Resources.” The new Bizer Creek bridge would result in a localized change in the aquatic flora and fauna species composition (under the bridge). In addition, the vegetated stream banks will be converted to developed land. Areas disturbed during construction that are not part of the permanent project footprint would be revegetated, in accordance with a Landscape Restoration Plan, to the greatest extent practicable with plant species indigenous to Western New York.

A cross-section conceptual design of the Bizer Creek bridge crossing has been added to Appendix I4, Hydraulic Analysis (Appendix A of the FEIS). The impacts to the Creek would be the same for both Build Alternatives.

C.5.2 Department of the Interior

C.5.2.1 Comments

The Department of the Interior (Department) reviewed the draft Section 4(f) evaluation for the Buffalo-Amherst-Tonawanda Corridor Transit Expansion Project proposed by Metro and FTA, the lead Federal agency. The Project would expand the public transportation system that connects downtown Buffalo with the State University of New York at Buffalo North Campus. The Project would expand the present service to include transit service from the current terminus at the Metro Rail University Station to existing and emerging activity centers in Amherst and Tonawanda.

At this time, there are still several outstanding issues for the Department to concur with FTA’s determination that Build Alternatives would result in a *de minimis* impact or no use under Section 4(f) on the 16 identified Section 4(f) resources in the Project area.

FTA has determined that there will be no adverse effect to historic properties in the area under Section 106. In correspondence with the New York State Historic Preservation Office (NY SHPO) dated January 25, 2024, FTA made the determination that the Project (LRT Build Alternative and BRT Build Alternative) would result in no adverse effects to Built Historic

Properties; however, the Project would permanently incorporate land from four historic properties and result in a *de minimis* use of Section 4(f) properties.

In that response letter, NY SHPO requested a Phase 1B archaeological testing plan. We understand that a Phase 1B archaeological investigation and its findings will be included within the Final EIS. As documented in Appendix F5, “Archaeological Testing Work Plan” of the Draft EIS a Phase 1B testing plan was submitted to NY SHPO for review and comment on February 16, 2024. The findings of the Phase 1B Field Investigation will determine the presence or absence of archaeological resources in this area; FTA will enter into a Project-specific Memorandum of Agreement to provide stipulations for future investigations and ways to avoid, minimize, or resolve any adverse effects to archaeological resources as a result of the construction of the Project. FTA will continue to consult with the NY SHPO and other consulting parties to develop the Memorandum of Agreement and identify additional measures and responsibilities to avoid, minimize, and mitigate potential adverse effects to archaeological resources protected under Section 4(f).

FTA is coordinating the potential temporary occupancy of Gateway Park and Ellicott Creek Trailway Bridge with the Town of Amherst, the Officials with Jurisdiction (OWJ), over the Section 4(f) resources. Prior to making Section 4(f) approvals, FTA must coordinate with these officials and provide the Section 4(f) evaluation for comment, and the officials having jurisdiction over the Section 4(f) lands must agree in writing with the assessment of impacts the Project would have on Section 4(f) resources and any proposed mitigation.

Since there are several outstanding issues (Section 106 and OWJ concurrence), the Department cannot concur at this time that all possible planning was done to minimize harm to and mitigate adverse effects to Section 4(f) resources. The Department encourages FTA to continue to work with the OWJ and NY SHPO to resolve the outstanding issues, and once they are resolved, the Department can provide its concurrence at that time.

C.5.2.2 Responses

Metro has coordinated with FTA to address the outstanding documentation required for a Section 4(f) determination. The requested documentation and outstanding determinations are included within Chapter 4, “Final Section 4(f) Evaluation” and Appendix D, “Final Section 4(f) Evaluation Supplement Information” of the FEIS.

C.5.3 New York State Department of Transportation

C.5.3.1 Comments

The New York State Department of Transportation (NYSDOT) supports Niagara Frontier Transportation Authority’s goal of ensuring that the region has high-quality regional transit service that can accommodate existing and future travel demands. NYSDOT is committed to

working with NFTA on the issues outlined below to ensure a safe, effective, and integrated multi-modal transportation system.

This informal letter outlines NYSDOT's concerns on the preferred rail alternative of the Buffalo-Amherst-Tonawanda Corridor Transit Expansion (the Project) and is not intended to be a formal comment on the Draft Environmental Impact Statement. Rather, NYSDOT is providing this letter to facilitate coordination with NFTA and allow for quick and productive resolution of the concerns.

The following are issues that NYSDOT believes must be addressed and resolved for the Project to be successfully implemented.

C.5.3.1.1 SAFETY

NFTA needs to provide NYSDOT with a better understanding of how traffic signal prioritization, operating speeds for both train and vehicular traffic, and the planned safety provisions for pedestrians and bicyclists will be addressed. Without these assurances, the Project presents significant safety challenges.

C.5.3.1.2 TRAFFIC AND OTHER IMPACTS TO THE STATE NETWORK

NYSDOT expects that the changes associated with the Project, particularly the proposed use of Niagara Falls Boulevard for rail, will create significant impacts on the state transportation network.

- NYSDOT is concerned that the elimination of a travel lane on Niagara Falls Boulevard will lead to major traffic diversions, compounded by projected volumes associated with nearby developments such as the Costco project and the Town of Amherst's sewer project along Sweet Home Road. As currently proposed, the Project does not adequately address how these adverse impacts will be mitigated.
- Drainage impacts associated with the Project also require detailed analysis, as the existing proposal leaves too many uncertainties impacting the state system.

C.5.3.1.3 RIGHT OF WAY

Use of Niagara Falls Boulevard for rail lines will require the issuance of easements and potentially new property acquisitions to accommodate displaced highway needs. Please note that any right of way (ROW) acquired for the purposes of relocating highway facilities must remain under NYSDOT jurisdiction. NYSDOT will determine whether an official order or a transfer process will be utilized in final design.

In addition, NYSDOT must issue its own State Environmental Quality Review Act determination before any permits, easements, or other administrative decisions regarding NFTA's use of state ROW can be granted. At present, the proposal does not provide sufficient clarity to support such determinations.

C.5.3.1.4 RIDERSHIP AND FUTURE PLANNING

NYSDOT remains concerned about whether ridership projections adequately justify the proposed scale and impacts of the Project. We would like to meet with NFTA to review these projections in greater detail to better understand how they align with regional growth and development, as well as what alternative approaches may better achieve the intended outcomes.

C.5.3.2 Responses

Comments seek additional details on design, such as the location of specific amenities, alignment design, streetscape elements, and station design. The assessment of the Project's effects is based on preliminary Project design concepts. Design of the Project is still underway and will be informed by the findings of this EIS. Design will continue to evolve as the Project moves toward implementation. Metro commits to further coordination with NYSDOT. Future coordination is expected to include a series of meetings focused on individual analysis topic areas and will provide the opportunity to share and discuss all EIS information and data in great detail. This coordination will seek input from NYSDOT that will guide future design efforts and refine design concepts that address NYSDOT concerns. Metro will pursue NYSDOT approval and necessary permits to construct the Project. Metro responses to NYSDOT's review of the DEIS are provided below.

C.5.3.2.1 SAFETY

Regarding the safety concerns expressed, Metro will continue coordination with NYSDOT regarding Project design, specifically addressing safety. This will include a hazard and risk assessment for NYSDOT review, as well as discussion related to at-grade crossing investments in safety infrastructure. Metro continues to coordinate with the appropriate emergency response entities to ensure community safety and address emergency response requirements.

Accordingly, the current preliminary design includes embedded track along Niagara Falls Boulevard and Maple Road, featuring a mountable curb that separates the Project alignment from general-purpose traffic. This design is intended to enable emergency vehicles to access and traverse the Project alignment as needed to bypass general traffic.

Metro commits to further coordination with NYSDOT. Metro will continue working with NYSDOT, including future meetings to address safety issues. This coordination will seek input from NYSDOT that will guide future design efforts and refine design concepts that address NYSDOT concerns. Metro will pursue NYSDOT approval and necessary permits to construct the Project.

C.5.3.2.2 TRAFFIC

Metro is committed to updating all Project traffic data, traffic patterns, and analyses as Project design progresses to ensure an accurate evaluation of the Project's impact on study area traffic. As part of this updated traffic analysis, Metro is also committed to conducting a detailed traffic

diversion analysis as it relates to Project construction and permanent roadway configuration changes along Niagara Falls Boulevard.

Metro commits to further coordination with NYSDOT. Metro will continue working with NYSDOT, including future meetings to address traffic issues. This coordination will seek input from NYSDOT that will guide future design efforts and refine design concepts that address NYSDOT concerns. Metro will pursue NYSDOT approval and necessary permits to construct the Project.

Appendix C1, “Transportation Technical Report” of the DEIS documents the methodology for developing future year travel demand estimates. The EIS coordinated with and uses the GBNRTC adopted socioeconomic projections and regional travel demand model to estimate future traffic volumes. GBNRTC is a federally designated MPO. In accordance with 23 CFR 450.300 and 49 U.S.C. 5303, MPOs must develop a long-range transportation plan that incorporates adopted socioeconomic projections, including anticipated growth in population, employment, and development.

C.5.3.2.3 DRAINAGE

The LRT Build Alternative and the BRT Build Alternative would result in a net increase in impervious cover. The drainage system in the Project Corridor would require updates to accommodate the Project at-grade configurations, facilities, stations, and roadway geometric modifications. Water quality treatment and increased stormwater runoff flows and volumes would be mitigated via new permanent stormwater best management practices (BMPs). Stormwater BMPs would be designed during final design and would be positioned within the landscape of the existing and proposed right-of-way in accordance with NYSDEC’s Stormwater Management Design Manual in such a way that would provide the required water quality treatment, runoff reduction, and peak flow attenuation. See Section 4.10, “Water Resources” and Appendix I3, “Stormwater Treatment Documentation” (Appendix A of the FEIS) for more details on stormwater management. This proposed investment in water treatment infrastructure has been included within the Opinion of Probable Cost for the Project. The Project will coordinate with the Town of Amherst’s planned sewer project along Sweet Home Road, as needed.

Metro commits to further coordination with NYSDOT. Metro will continue working with NYSDOT, including future meetings to address drainage issues. This coordination will seek input from NYSDOT that will guide future design efforts and refine design concepts that address NYSDOT concerns. Metro will pursue NYSDOT approval and necessary permits to construct the Project.

C.5.3.2.4 RIGHT-OF-WAY

Metro is concurrently seeking a parallel SEQR determination in coordination with this federal EIS. Metro will coordinate with NYSDOT as it relates to NYSDOT SEQR requirements and will work with NYSDOT to address the concerns expressed before requesting any permits, easements, or other administrative decisions.

Metro commits to further coordination with NYSDOT. Metro will continue working with NYSDOT, including future meetings to address right-of-way issues. This coordination will seek input from NYSDOT that will guide future design efforts and refine design concepts that address NYSDOT concerns. Metro will pursue NYSDOT approval and necessary permits to construct the Project.

C.5.3.2.5 FORECASTED RIDERSHIP ESTIMATES

As documented in previous responses, Metro is committed to updating traffic data, traffic patterns, travel demand data and analyses as Project design progresses to ensure an accurate evaluation of the Project's impact on study area traffic.

Detailed transit ridership data collection and analysis methodologies are presented in Appendix C2, "Travel Demand Forecasting" of the DEIS. Ridership forecasts are based on historical and current data provided by Metro and UB. For the EIS, Metro utilized the FTA Simplified Trips-on-Project Software (STOPS) model. The STOPS model is a transit ridership forecasting tool designed to support projects seeking Federal funding through the Capital Investment Grant program. The STOPS model calibration for the Project was updated using post-pandemic ridership counts, socio-economic projections, and zone-to-zone highway travel times to reflect more recent transit demand patterns. As the Project advances toward implementation, these ridership forecasts will be revisited to ensure accuracy, particularly in support of the FTA Capital Investment Grant application.

The socioeconomic data used is, as discussed, based on the GBNRTC adopted socioeconomic projections and regional travel demand model. In accordance with 23 CFR 450.300 and 49 U.S.C. 5303, MPOs must develop a long-range transportation plan that incorporates adopted socioeconomic projections, including anticipated growth in population, employment, and development.

Metro commits to further coordination with NYSDOT. Metro will continue working with NYSDOT, including future meetings to address forecasted ridership issues. This coordination will seek input from NYSDOT that will guide future design efforts and refine design concepts that address NYSDOT concerns. Metro will pursue NYSDOT approval and necessary permits to construct the Project.

C.5.4 Town of Amherst

The Town of Amherst sent two letters in response to the DEIS and Draft Section 4(f) Evaluation. The first letter was dated September 8, 2025 and the second letter was dated September 24, 2025.

C.5.4.1 Comments

The Town appreciates the opportunity to review the Niagara Frontier Transportation Authority's Draft Environmental Impact Statement and Draft Section 4(f) Evaluation for the Buffalo-Amherst-Tonawanda Corridor Transit Expansion Project into Amherst. The Town of Amherst supports the expansion of mobility options, including enhanced transit, to provide accessible, reliable and more frequent transportation for residents and visitors. The Town also recognizes that enhanced transit will also spur transit-oriented development (TOD) that provides great potential for economic vitality, encourages additional housing options, and reduces traffic.

After reviewing the DEIS this past spring during a preliminary agency review and again during this National Environmental Policy Act and State Environmental Quality Review stage the Town continues to have the following concerns:

C.5.4.1.1 BOULEVARD MALL PROPERTY

The alignment of the proposed light rail line along the Niagara Falls Boulevard and Maple Road frontages of the Boulevard Mall property disconnects it from these important roadways and a major multi-jurisdictional intersection. The Town desires that the alignment avoid this location to preserve the connection and visibility of the property to these streets and to be better integrated with potential future redevelopment of the site.

C.5.4.1.2 NOISE AND VIBRATION IN RESIDENTIAL NEIGHBORHOODS

The addition of the proposed light rail service along the southern portion of Niagara Falls Boulevard and into the Audubon Community along John James Audubon Parkway represents a major change to the current character of these areas. Noise impacts should be minimized by using any means necessary. Options to be explored should include reduced speeds, reduction in bell chimes and horns from trains, buffer elements such as landscaping, berms or walls / sound barriers where appropriate, noise dampening wheel skirts, and other noise reducing measures. The Town would like assurances that maintenance will occur regularly and replacement of obsolete track and/or train equipment will occur at the earliest opportunity. Should advancing technologies produce new noise reducing measures, these should be explored and implemented into the transit system. The effects of vibration on surrounding properties should be minimized during construction and normal train operations through identified appropriate mitigation measures and by full property acquisitions if impacts cannot be addressed.

C.5.4.1.3 TRAFFIC AND PEDESTRIAN PATTERNS

The introduction of light rail service that is center-running along Niagara Falls Boulevard and Maple Road will disrupt vehicular traffic patterns and cause trips to be diverted into surrounding

neighborhood streets. Non-signalized intersections will be less accessible, employees and residents will face challenges making alternative movements to access their homes or businesses, making full evaluation of access management measures along the corridor a necessity. The Town also has concerns regarding pedestrian and bicycle movements, such as those trying to access the light rail in the middle of the roadway and/or those trying to cross the street; proper safety measures that reduce potential conflicts must be employed to ensure safety.

C.5.4.1.4 GATEWAY PARK

The Town has considered how the construction and operation of the transit extension will affect Gateway Park and offers the following with regard to its significance as a Section 4(f) resource. The Town understands that for a portion of the construction period, Gateway Park will be unavailable for use. During construction and as Gateway Park is re-established, the Town desires that the following be explored and implemented through an agreement between the NFTA and the Town:

- The NFTA will make every effort to reduce the impact of construction on the current bus routes and riders at this intersection.
- Any remaining hazardous materials located at or within the public rights-of-way near the park site must be remediated during construction
- Properties located directly adjacent to Gateway Park that are determined to be full acquisitions by the NFTA during the construction process will be added to the overall park space and ownership of these parcels will be transferred to the Town
- The NFTA will work with the Town to explore ways to incorporate a variety of additional active and passive recreational opportunities at the park site
- The substation at Gateway Park will be located underground
- The design and location of any necessary above ground infrastructure related to the light rail will be coordinated and agreed upon by the Town and NFTA

As a follow up to our previous comments on the Niagara Frontier Transportation Authority's (NFTA) Draft Environmental Impact Statement and Draft Section 4(f) Evaluation for the Buffalo-Amherst-Tonawanda Corridor Transit Expansion Project (the Project) submitted on September 8, 2025, the Town of Amherst (the Town) respectfully submits the following clarifying information regarding the evaluation of Gateway Park as a potentially protected resource under Section 4(f) of the U.S. Department of Transportation Act, as codified in Title 23, Code of Federal Regulations (CFR), Part 774.

As a stated goal within the Town of Amherst's Bicentennial Comprehensive Plan and Recreation and Parks Master Plan, the Town is committed to establishing and maintaining a network of park and recreational spaces to enhance the quality of life for Town residents and visitors alike. This

includes providing high-quality amenities and facilities throughout our system of parks to create better user experiences, increase functionality, and elevate levels of community satisfaction.

Gateway Park is a newer addition to the Town's Park system with its opening in 2023. Located on the corner of Niagara Falls Boulevard and Kenmore Avenue, Gateway Park currently functions as a passive park that includes eight parking spaces, a small lawn area with a shade structure, bench seating and landscaping, and an area of open space/grass pavers for stormwater filtration. The park currently lacks active recreational amenities such as a playground; has limited programming; and its limited parking constrains its capacity to host large events.

In light of the current conditions and functionality of Gateway Park the Town has determined that it does not meet the criteria of a “significant” public park resource as defined under Section 4(f) regulations. As noted in our letter of September 8, 2025 providing comment on the Project's DEIS, the Town has considered how the construction and operation of the transit extension will affect Gateway Park. The Town understands that for a portion of the transit construction period Gateway Park will be unavailable for use and will be restored to a condition that is the same or better than today upon Project completion. As the letter states, the Town requests the NFTA to identify opportunities following Project construction to implement enhancements to the park that align with the Town's long-range park planning goals. This may include identifying opportunities to incorporate additional active and passive recreational resources to the site, improving the park's accessibility, and expanding the site's footprint to accommodate additional users and amenities.

C.5.4.2 Responses

Metro responses to the Town of Amherst's review of the DEIS and Draft Section 4(f) Evaluation are provided below.

C.5.4.2.1 BOULEVARD MALL PROPERTY

As outlined in the response to Comment Group #5, the Project alignment was identified through an iterative process that included stakeholder feedback. Metro and the Greater Buffalo-Niagara Regional Transportation Council (GBNRTC) initiated an Alternatives Analysis process in 2012 to evaluate high-quality public transit service alternatives between Downtown Buffalo, Buffalo's Main Street Metro Rail Corridor, and the Town of Amherst. A detailed description of the development and identification of alternatives is documented in Appendix B1, “LRT Build Alternative and BRT Build Alternative Supplemental Information” of the DEIS.

Metro has and will continue to coordinate with the Town of Amherst regarding the Project alignment through the Boulevard Mall site. At the time of the publication of the DEIS, the development plans for the Boulevard Mall site were undetermined. However, as the development plans for the site continue and are finalized, Metro is committed to future coordination with the Town regarding refinements to the Project alignment. Metro seeks to

incorporate the Project design into the redevelopment of the Boulevard Mall to accomplish a fully-integrated Transit Oriented Development (TOD) opportunity for the community.

C.5.4.2.2 NOISE AND VIBRATION IN RESIDENTIAL NEIGHBORHOODS

As described in Section 4.11, “Noise” and Appendix D7, “Noise and Vibration Technical Memorandum” of the DEIS, Metro conducted a noise analysis following procedures described in the Federal Transit Administration (FTA) *Transit Noise and Vibration Impact Assessment* (FTA Guidance Manual) (FTA Report No. 0123, September 2018) for rail and bus-related noise and vibration impacts. Based on this analysis, the Project would not result in a moderate or a severe impact along Niagara Falls Boulevard. Incremental changes in noise levels between the LRT Build Alternative and existing conditions would be up to 4 dBA, which would be imperceptible to less than readily noticeable.

Residences within 172 feet of the surface tracks and embedded track at grade crossings along John James Audubon Parkway between Dodge Road and the Amherst Police station would experience noise exposure in the moderate impact category and noise level increments (i.e., the difference from existing noise levels) between 4 and 8 dBA. Such noise levels would be perceived as readily noticeable as compared to existing levels at these receptors.

To reduce the adverse noise impacts resulting from the LRT Build Alternative, Metro will implement, as practical, various mitigation strategies. These mitigation strategies (presented in Section 4.11, “Noise”) were incorporated into the conceptual design and operational assumptions and the noise analysis. In addition, Metro will also consider landscaping along John James Audubon Parkway. This potential investment does not have a quantifiable impact on Project noise (per FTA Guidelines); therefore, it is not considered a proposed mitigation strategy.

C.5.4.2.3 TRAFFIC AND PEDESTRIAN PATTERNS

The assessment of the Project’s effects is based on preliminary Project design concepts. Design of the Project is still underway and will be informed by the findings of this EIS. Design will continue to evolve as the Project moves toward implementation.

Detailed traffic data collection and analysis methodologies are presented in Appendix C1, “Transportation Technical Report” of the DEIS. Metro is committed to updating traffic data, traffic patterns, and analyses as Project design progresses to ensure an accurate evaluation of the Project’s impact on study area traffic. As part of this updated traffic analysis, Metro is also committed to conducting a detailed traffic diversion analysis as it related to roadway configuration changes along Niagara Falls Boulevard.

As the Project moves toward implementation, Metro is committed to developing a detailed vehicular access management evaluation and plan to assess property access limitations along the entire Project alignment during construction and operation. This access management plan will direct and be incorporated into future design efforts.

C.5.4.2.4 GATEWAY PARK

Metro will coordinate with the Town through a memorandum of agreement on the following:

- Metro will make efforts to reduce the impact of construction on the current bus routes and riders at this intersection.
- Any hazardous materials which Metro caused or causes to be located at or within the public rights-of-way near the park site will be remediated during construction to the extent practicable.
- Metro will consider the potential transfer to the Town of Amherst of properties located directly adjacent to Gateway Park that are acquired during the construction process.
- Metro will work with the Town to explore ways to incorporate a variety of additional active and passive recreational opportunities at the park site.
- The substation at Gateway Park will be located underground.
- The design and location of any necessary above ground infrastructure related to the light rail will be coordinated and agreed upon by the Town and Metro, which agreement shall not be unreasonably withheld.

As requested in the September 24, 2025 letter, Metro will evaluate potential opportunities following Project construction to implement enhancements to Gateway Park that align with the Town's long-range park planning goals. This may include identifying opportunities to incorporate additional active and passive recreational resources to the site, improving the park's accessibility, and expanding the site's footprint to accommodate additional users and amenities.